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Introduction



Turbofan aircraft engines

▶ Produces thrust by accelerating air
(Newton’s third law).

▶ Most civil aircraft use 2-spool,
high-bypass turbofan jet engines.

▶ In this work: mid-range aircraft.
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Use case introduction

Vibration monitoring for aircraft engines condition monitoring (CM)

▶ Crucial part of CM for rotating industrial equipment.
[Randall, 2011, Bastard et al., 2016]

▶ ⇑ Availability and safety, ⇓ Costs
▶ Engine manufacturers are now responsible for maintenance (leasing).
▶ Detection of unbalance, misalignment due to wear (blades
[Kharyton, 2009, Hazan et al., 2010], bearings [Orsagh et al., 2003], gears
[Wang et al., 2001]), rotor/stator contact [Peng et al., 2005]
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Overview

Proposition
Methodology for large-scale vibration monitoring of a fleet of aircraft engines
using historical flight recorder data.

1. Massive extraction of time-domain vibration signatures using distributed
processing on a cluster.

2. Unsupervised learning (self-organized maps) for clustering and visualization.

!Monitoring, alerting, forecasting.
%Diagnosis and prognosis is left to experts.
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Large-scale vibration signature
extraction



Vibration sensors

Bearing #1

N2 sensor

N1 sensor

ACC1 sensor

Turbine rear frame

ACC2 sensor

Sensors measure rotation speeds and
vibration peak amplitude (displacement,
speed or acceleration). Raw signals are
processed and downsampled onboard.

Variables:

▶ N1: LP shaft rotation speed @66Hz
▶ N2: HP shaft rotation speed @66Hz
▶ LP-ACC1, LP-ACC2: vibration amplitude
at N1 speed @4Hz

▶ HP-ACC1, HP-ACC2: vibration amplitude
at N2 speed @4Hz
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Example signals

N1 and LP-ACC2 signals during one flight:
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Vibration signatures

Vibratory response of the engine: vibration amplitude as a function of regime.
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Experts can infer engine behaviors by looking at signatures (modes at different
regimes→ unbalance at specific locations of the engine).
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Vibration signatures

4 vibration signatures are studied in this work:

1. LP-ACC1 vs N1
2. LP-ACC2 vs N1
3. HP-ACC1 vs N2
4. HP-ACC2 vs N2
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Data acquisition process & properties

CEOD: Continuous Engine Operational Data

1. Collected during entire flights, stored in the onboard flight recorder (100s of
variables @ up to 66Hz).

2. Downloaded on ground between flights, transferred from the airline to the aircraft
engine manufacturer.

3. Decoded and ingested into Hadoop cluster (distributed data warehouse).

Property Approximate value

Number of engines 1000
Number of flights 1 million
Number of parameters 6
Frequency of parameters 4 Hz or 66 Hz
Total HDFS storage volume 1 TB
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The V’s of Big Vibration Data

Drivers:

• Volume (more sensors, higher frequency)
• Velocity (air traffic growth, data transfer speed)
• Vibration (high-dimensional) ?

Need for a Big Data stack! (end-to-end scalability)
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Generic processing pipeline

Based on the generic processing pipeline introduced in [Forest et al., 2018].

CEOD
ingestion Preprocessing * Feature Extraction

  & Normalization * Flight
Features

Learning
  Algorithms *

(SOM)
Models

Visualization
Application

Domain
Knowledge

Predefined
Spark

Functions

Custom
Algorithms

insights

* Flexible
Configuration
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Massive signature extraction

▶ Data-parallel computation of vibration signatures.
▶ Engineers can easily input their business logic functions.

Signature computation
function API

Transparent use of
Spark APIs

Flight #001

Flight #002

Flight #003

Flight #004

...

...

Flight #442

Flight #443

...
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Clustering and visualization with
self-organized models



Self-Organizing Maps

SOM algorithm for clustering and visualization [Kohonen, 1982].

▶ Self-organization, competitive learning process (inspired from
biological brain cells).

▶ Neighborhood relationship between cluster centers (a.k.a.
code or prototype vectors).

▶ Applications to engine health monitoring [Cottrell et al., 2009,
Côme et al., 2011, Faure et al., 2017, Forest et al., 2018].

Algorithm (stochastic version):

1. Initialize map prototypes {mk}1≤k≤K ∈ RD.
2. Iterate over data samples X = {xi}1≤i≤N, xi ∈ RD :

2.1 Find best-matching unit bi = argmink||xi −mk||22
2.2 Update each prototype vector mk ← mk + αKT (δ(bi, k)) (xi −mk)

2.3 Update neighborhood function KT(d) = e−d2/T2

where T(t) = Tmax (Tmin/Tmax)t/iterations
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Vibration profiles visualization

▶ Outputs a map of K× K units associated
to prototype vibration signatures (15-d
vector), representing vibration profiles.

▶ Self-organization→ smooth variations,
interpretability.

▶ Each flight is clustered by projecting on
the nearest vibration profile
(Best-Matching Signature).

▶ -distributed implementation of
batch SOM for scalability
(github.com/FlorentF9/sparkml-som).

Figure 1: Signature 4 (HP-ACC2 vs N2) 13/18
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Results analysis

Vibration signatures describe intrinsic properties of an engine.
▶ Every engine is different!
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Figure 2: Heatmaps of projection counts for 3 different engines.
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Methodology

▶ Classification into higher-level vibration profiles by clustering the prototypes
(agglomerative hierarchical clustering)

▶ Expert labelling of map regions (e.g. well-balanced engines, unbalanced
ones, switched off sensors)

▶ Distance to map→ Anomaly score
▶ Analysis of the evolution of an engine flight after flight: engine trajectory
(see e.g. [Côme et al., 2011]).

• Sudden jumps or progressive trends detect abnormal wear…or normal events
(maintenance, algorithmic artifact, etc.)

• Find similar engines, future trajectory forecast (post-finding)
▶ Periodically re-train models with up-to-date flight data, to account for new
trends and the aging of the fleet.
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Engine trajectory visualization
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Engine trajectory visualization
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Conclusion & future work



Conclusion & future work

Main takeaways

• Vibration monitoring based on flight recorder data and unsupervised learning
algorithms for clustering and visualization.

• As part of CM strategy, allows to quickly detect wear of parts, or abnormal behaviors.
• Large-scale, global approach on entire fleets — running on production cluster.
• Machine learning is able to crunch huge amounts of numbers…
• …but needs domain knowledge and the interpretation of field experts!

Future work:

• Study vibration of other engine parts.
• Model and predict future engine trajectories.
• Extract higher-dimensional features from signature point clouds
(std, enveloppe, etc.).
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Thank you for watching, feel free to read the paper for more
details!
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