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Abstract—Time series clustering is a challenging task due to
the specificities of this type of data. Temporal correlation and
invariance to transformations such as shifting, warping or noise
prevent the use of standard data mining methods. Time series
clustering has been mostly studied under the angle of finding
efficient algorithms and distance metrics adapted to the specific
nature of time series data. Much less attention has been devoted
to the general problem of model selection. Clustering stability
has emerged as a universal and model-agnostic principle for
clustering model selection. This principle can be stated as follows:
an algorithm should find a structure in the data that is resilient
to perturbation by sampling or noise. We propose to apply
stability analysis to time series by leveraging prior knowledge
on the nature and invariances of the data. These invariances
determine the perturbation process used to assess stability. Based
on a recently introduced criterion combining between-cluster and
within-cluster stability, we propose an invariance-guided method
for model selection, applicable to a wide range of clustering
algorithms. Experiments conducted on artificial and benchmark
data sets demonstrate the ability of our criterion to discover
structure and select the correct number of clusters, whenever
data invariances are known beforehand.

I. INTRODUCTION

Time series are a type of data naturally organized as
sequences with a temporal dimension, such as values collected
by sensors. Large volumes of unlabeled data are ubiquitous
across various domains such as healthcare, industry, biology,
astronomy, economy, the internet of things (IoT) and many
others. Clustering, a widely used technique to gain insights
from such data, consists in finding groups of elements called
clusters such that elements sharing the same cluster are similar,
and elements belonging to different clusters are dissimilar.
Time series clustering (TSC) [1], [2] is a challenging task
due to the temporal nature of the data, which implies high
dimensionality [3], temporal feature correlation, invariance to
transformations, and different lengths. Model selection for
TSC in particular is not well studied in literature [2]. For
instance, methods to select the number of clusters are rarely
provided, although selecting the best or natural number of
clusters is known to be one of the crucial problems in cluster
analysis [4]-[6]. When external labels are unavailable, model
selection is done using internal clustering validity indices [7].
Most indices are based on between-cluster and within-cluster
distances, and could be used with any distance other than
Euclidean (e.g. Silhouette with Manhattan distance [4]), but
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their application to time series has not been well studied [1].
These indices are generally used on extracted features, not
raw time series (e.g. Davies-Bouldin in [8]). Heuristic methods
with cross-correlation dissimilarity have been developed in [9].
For TSC based on autoregressive models, distances between
ARMA/ARIMA models have been devised [10], [11]. In case
of model-based clustering, such as mixture models, the AIC,
BIC and ICL criteria have been widely used [12]-[15]. Still,
the validation of time series clustering is unsolved in general.

Clustering stability [5], [6] has emerged as a natural and
model-agnostic principle: an algorithm should find stable
structures in the data. "To be meaningful, a clustering must
be both good and the only good clustering of the data, up fo
small perturbations. Such a clustering is called stable. Data
that contains a stable clustering is said to be clusterable" [16].
In statistical learning terms, if data sets are sampled from the
same underlying distribution, an algorithm should find similar
partitions. The data-generating distribution is unavailable in
model-free clustering, thus perturbed data sets are obtained
either by resampling or injecting noise into the original data.
Limitations of this principle, in particular its ability to select
the number of clusters, have been studied in [17]. It has
been shown that a novel criterion called Stadion (stability
difference criterion) is able to successfully discover structure
and select the number of clusters when using additive noise
perturbation. We base ourselves onto this work and extend it
to time series which have their own specificities. It is known
that temporal data are resilient to particular perturbations,
which depend on the application and the physical nature of
the observed phenomena. Thus, we leverage prior knowledge
on the invariances of the data in order to assess stability of a
clustering.

Invariant perturbations are already used for data augmen-
tation, to improve the generalization capability of supervised
classifiers. Suitable perturbations for various applications can
be found in this literature, for example for time series [18],
[19] or images [20], [21]. Transformation-invariant clustering
algorithms have also been developed [22], [23]. To our knowl-
edge, the first application of stability analysis to time series
clustering comes from the financial field [24]. In their work,
authors study the price of financial derivatives, namely credit
default swaps. They compare the stability of weighted linkage
clustering with different dissimilarities (Euclidean distance,
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Pearson and Spearman correlations, and a combination of
correlation and Hellinger distance between distributions). In
order to assess stability, they devise a specialized perturbation
framework for financial time series. This idea of leveraging
prior knowledge on the nature and properties of the data is
also what we would like to develop in this work. However,
the approach remains focused on their business field and
is application-specific. In addition, no quantitative stability
scores are computed, and results are interpreted by visual-
izing the partitions. Finally, it does not tackle the problem
of selecting the number of clusters. A second recent work
[25] uses stability to evaluate fuzzy over-time clustering to
detect correlated subsequences in multivariate time series. This
approach is interested in time-point clustering (i.e. clustering
individual time points of several series) and in particular
the evolution of cluster structure over time. Differently, our
work focuses on whole time series clustering. Moreover, they
compute stability scores based on a resampling approach [26],
whereas we adopt the framework of [17], using perturbation
by noise.
The main contributions of this paper are the following:

o To our knowledge, this work is the first general ap-
plication of stability analysis to time series clustering
validation.

o We show that the stability difference criterion (Stadion)
from [17] can effectively perform model selection, by
letting data invariances guide the perturbation process. In
particular, the criterion is able to select the number of
clusters.

o Implementations are made available as part of skstab!',
a toolkit for clustering stability analysis in Python with
a scikit-learn compatible API.

The rest of the paper is structured as follows: first, an
overview of TSC algorithms and the concept of invariance
is provided. Second, we introduce formally the definition of
clustering stability and the Stadion criterion. The last section
exposes the challenges of TSC stability and applies it to several
model selection tasks.

II. INVARIANCES AND TIME SERIES CLUSTERING

Clustering algorithms are always based on a notion of dis-
tance between elements of the data set. Distances between time
series are only meaningful if they satisfy certain invariances:
in other words, some sequences should be considered similar
even if their raw feature values are different. It is not possible
to choose an adequate distance measure without knowing what
invariances are desirable for the specific task. For the same
data set, several clustering solutions are possible, depending on
these invariances. Hence, the problem of multiple clusterings
is amplified [27]. Example of invariances are:

o Scale and/or offset invariance. In many cases, we want
two series to be considered similar if they differ by
an affine transformation (for example, if a value was

Thttps://github.com/FlorentF9/skstab

measured in different physical units, like Celsius and
Fahrenheit degrees).

o Shift invariance. If a same phenonemon is observed
at different time points in two series, they should be
considered identical.

« Warping invariance. This invariance is necessary if the
phenonemon may have different speeds or delays, which
is ubiquitous in motion and biological signals. Series can
be aligned and matched using Dynamic Time Warping
(DTW) [28].

o Uniform temporal scaling invariance. Unlike local
scaling in warping, global scaling is necessary to match
behaviors at different speeds or frequencies, yielding
series with different lengths. A solution is to stretch series
by a constant factor.

e Occlusion invariance. Parts of the input being unob-
served should not change cluster membership.

o Complexity or noise invariance. [29] have shown that
time series can have different complexities, and that
complex time series tend to be closer to simpler time
series than to other complex time series under Euclidean
distance.

Euclidean distance, used in most traditional clustering algo-
rithms that operate on tabular data (i.e. flat vectors of features),
does not satisfy any of these invariances. Thus, a variety of
dissimilarity measures between time series has been devised
[30].

Time series clustering methods can be broadly divided into
three categories [2]. Whole time series clustering considers
each series as an invidual object. Subsequence clustering
consists in clustering subsequences of a single time series,
for example a measurement over a long period of time or
real-time, streaming data. Time point clustering clusters the
individual time observations, and is similar to segmentation.
In this work, we only experiment with whole time series
clustering.

On another level, clustering algorithms can be either based
on raw time series, feature-based, or model-based [1]. Raw
time series clustering algorithms define a distance between
raw values in the time domain. Agglomerative clustering with
single, complete or average linkage, and K-medoids (also
called PAM for Partitioning Around Medoids) [4], [31] can
be used with any distance between time series. Other widely
used methods require the computation of an average in the
sense of specific distance, such as K-DBA [32], K-SC [33]
and K-shape [34]. Another approach uses shapelets, which are
short salient subsequences that discriminate between classes.
First proposed in supervised learning, unsupervised shapelets
are also used for clustering [35], [36].

Feature-based approaches consist in removing the temporal
dimension by extracting higher-level features and projecting
the data into a space where euclidean distance and generic
algorithms (e.g. k-means, agglomerative clustering, SVMs,
decision trees) can be used. For instance, statistical features
can be extracted, such as mean, variance, minimum and
maximum values, number of peaks, etc. Then, a time series
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can be projected into the frequency domain using a Fourier
transform, extracting spectral features. Wavelets are another
option. Another approach is to discretize the values taken
by the series and aggregate the sequence into a bag-of-
features, removing the temporal dimension, called piecewise
aggregate approximation [37], [38]. Many successful methods
in classification and clustering are based on combining bags
of multiple time- and frequency-domain features [39], [40].
Finally, this includes deep learning approaches where a neural
network learns representations from the raw time series values
[41]-[44].

Another kind of approach learns the temporal behavior
through autoregressive models, such as ARMA or recurrent
neural networks, and cluster the resulting model parameters
[10], [11]. Finally, model-based clustering estimates cluster
membership probabilities using probabilistic models such as
functional mixture models [45].

In this work, we will experiment with two widely used algo-
rithms: K -medoids and K -shape. K -medoids is a center-based
algorithm, but differently from K -means, instead of computing
the mean (centroid) of each cluster, the center is the element
minimizing the sum of the distances to every other element
(and is called the medoid). It can be used with any dissimilarity
measure. Here, we will use Euclidean (EUC), Correlation
(COR) and Dynamic Time Warping (DTW) [28] distances,
defined between two same-length series x = (21, ...,2r) and

y=(y1,...,yr) as

EUC(x,y) = [Ix = yll2 = @
COR(x,y) = 1 — NCCy(x,y)
D D) [Tt ) R
1% = %ll2|ly = ¥l
DTW(x,y) = min 3

where the warping path W = {wy,...,wp} with P > T
is obtained using a dynamic programming approach on the
pairwise distance matrix between the two series, based on
following recurrence: d(i,j) = EUC(4,5) + min{d(i — 1,5 —
1),d(i — 1,7),d(i,5 — 1)}. It is common to constrain the
warping path to a band around the diagonal, e.g. the Sakoe-
Chiba band [28]. The invariances of K -medoids depend on
the disance used: no invariance with EUC, scale invariance
with COR and warping invariance with DTW. K-shape is a
center-based algorithm using the shape-based distance (SBD),
based on normalized cross-correlation:

SBD(x,y) = 1 — max NCC,(x,y) 4)

where w € [T, T)] is the shifting of x. K -shape is thus invari-
ant to scaling and shifting, and is meant to be computationally
efficient in its computation of averages.

ITI. STABILITY ANALYSIS

A data set X = {x1,...,xy} consists in N independent
and identically distributed (i.i.d.) univariate or multivariate
time series, drawn from a data-generating distribution P on
an underlying space X. We assume a clustering algorithm A
takes as input the data set X, the number of clusters K > 1,
and outputs a clustering Cx = {C1,...,Ck} of X into K
disjoint sets.

Let X and X’ be two different data sets drawn from
P and note Cx and Cj their respective clusterings. Let s
be a similarity measure such that s(Cg,C}) measures the
agreement between the two clusterings. Following the study
in [17], we adopt the adjusted Rand index (ARI) measure
[46]. For a given sample size N, the stability of a clustering
algorithm A is defined as the expected similarity between two
clusterings Cg, C} on different data sets X and X', sampled
from the distribution P,

Stab(A, K) = EX,X’NPN [S(CK, C}()} . (5)

The expectation is taken with respect to the i.i.d. sampling
of the sets from P. This quantity is unavailable in practice,
as we have a finite number of samples, so it needs to be
estimated empirically. Various methods are listed in [6], [17],
based either on resampling or noise. Stability is determined by
the number of data points changing clusters under perturbation.
In the case of algorithms that minimize an objective function,
sources of instability have been discussed in [6]. In a context
of large sample size and effective algorithm initialization, [17]
identified jittering as a sufficient source of instability. Jittering
is caused by data points changing side at cluster boundaries
after perturbation. Therefore, strong jitter is produced when
a cluster boundary cuts through high-density regions. Other
sources of instability do not occur in our setting.

Let {X4,...,Xp} be D perturbed versions of the original
data set X. Between-cluster stability of algorithm A with
parameter K estimates the expectation (5) by the empirical
mean of the similarities s between the reference clustering
Ck = A(X, K) and the clusterings of the perturbed data sets,

1 2

Stabp (A, X, Crc, ) = D;s(cmmxd,m» (6)
Since s is a similarity measure, this quantity needs to be
maximized. Then, within-cluster stability has been introduced
to assess the presence of stable structures inside each cluster.
To this aim, [17] propose to cluster again the data within each
cluster of Cx. Formally, let 2 C N* be a set of numbers
of clusters. The k-th cluster in the reference clustering is
noted C,, its number of elements N}, and Q(I?,) = A(Cy, K')
denotes a partition of Cj into K’ clusters. Within-cluster
stability is defined as

Stabw<A,X,CK, K, Q) =

2 (i

k=1

N,

3 StabB(A,Ck,Qy;,),K’)) x5 ()

K'eQ2
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As a good clustering is unstable within each cluster, this
quantity needs to be minimized. Hence, the Stadion validity
index (standing for stability difference criterion) combines
between-cluster and within-cluster stability by computing the
difference between both quantities. Omitting A, K and X in
the notations, its expression is:

Stadion(Cg, 2) = Stabg(Cx) — Stabw (Cx, ).  (8)

Since we use an effective initialization scheme, the same
reference partition Cx is used in both terms of (8). Thus,
Stadion evaluates the stability of an algorithm w.r.t. a reference
partition. An important assumption behind our implementation
of within-cluster stability is that, for non-clusterable structures
(w.r.t. an algorithm), the algorithm must place cluster bound-
aries in high-density regions to produce instability through
jittering.

By varying ¢ from 0 to a maximum value ep,y, a so-called
stability path is obtained, i.e. the evolution of a stability score
as a function of ¢ (see examples in Figures 2, 7 and 9). A
straightforward method to fix £,x beyond which comparisons
are not meaningful anymore is as follows. The perturbation
corresponding to emax 1S meant to destroy the cluster structure
of the original data. This corresponds to the value where
the data are no longer clusterable, i.e. K = 1 becomes the
best solution w.r.t. Stadion. As shown in [17], a first guess
at €max = /P (Where p is the data dimension) works well
in practice. Visualizing the stability paths helps interpreting
the structures found by an algorithm, hence improving the
usefulness of results.

IV. INVARIANCE-GUIDED STABILITY FOR TIME SERIES

Stability methods based on resampling are data-independent
and therefore directly applicable to time series. However,
it has been shown in a realistic setting that these methods
cannot work in the general case [17]. On the contrary, noise-
based perturbations such as uniform or Gaussian e-Additive
Perturbation produce instability through jittering of cluster
boundaries. The underlying assumption is that a clustering
should be resilient to low levels of noise (no points change
clusters), unless a boundary lies in a high-density region,
where a large number of points change clusters. While adding
uniform or Gaussian noise to every dimension is meaningful
for tabular vectors of normalized features where Euclidean
distance is used, it is irrelevant for raw time series. Algorithms
for clustering raw time series use different distance metrics,
thus there is no reason that random noise would or would
not make points change clusters, depending on the cluster
boundaries. The notion of cluster boundary itself becomes
unclear when using different distances, as it is no longer a
simple hyperplane. Clusters of time series are not clusters in
the sense of euclidean distance and are resilient to different
types of perturbation. For example, if time series are invariant
to shifting, clusters should be resilient to perturbation by
random shifting. As another example, if a set of time series
is clustered under DTW distance with Sakoe-Chiba band w,
clusters should be resilient to perturbation by warping, with

of [ @
S scaling
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: >z
Location
Fig. 1. Artificial time series data set consisting in one-dimensional bumps

at two different locations and scales. The data distribution is represented in
the (location, scale) latent factor space. Invariance to perturbation by random
shifting (red) or scaling (green) determines the cluster structure, leading to 4
different solutions with 1, 2 or 4 clusters.

a warping level not exceeding w. Most importantly, these
invariances are determined by the physical nature of the
observed phenomenon and not by the data set itself. The
practitioner needs to know in advance which transformations
are invariant and which are not. Only then, a suited distance
and algorithm can be used and evaluated for model selection.

A. Perturbing invariant latent factors

The computation of stability needs to be adapted to the case
of time series, and the perturbation process depends on the
invariances of the data (shifting, scaling, offsetting, uniform
or local warping, noise, etc). Let us illustrate this discussion
with a simple artificial example, displayed on Figure 1. A
data set consists in one-dimensional time series with "bumps"
at two different time locations and with two different scales
on the y-axis.

The data are generated by only two underlying latent
factors: location (z1) and scale (z2). Had we access to the
variables underlying the time series data-generating process,
the task would be traditional clustering in a two-dimensional
Euclidean vector space: the latent data distribution is simply 4
Gaussians. At a first glance, the model selection task can now
seem straightforward: take any clustering algorithm based on
Euclidean distance (e.g. k-means or Ward linkage), with e-
AP, and the Stadion criterion surely outputs the solution with
K = 4. However, it is clearly false, because the true solution
depends on the invariances of the original time series. The
perturbation used in latent space must also take into account
these invariances. Shift (or scale) invariance implies the vari-
able z; (respectively z2) should be ignored in the perturbation.
There is a duality between perturbations in original time series
space and in latent factor space, represented on Figure 1. The
true cluster structure consists in:

o Shift and scale invariance: solution (1) with K =1

9299



« Shift invariance only: solution (2) with K = 2
o Scale invariance only: solution (3) with K = 2
e No invariance: solution (4) with K = 4 clusters

In the next paragraphs, we will focus on two model selection
tasks, using the stability principle introduced in the previous
section. First, we show that stability indicates whether a
distance is adapted to the data invariances, and second, we
select the number of clusters K using the Stadion internal
validity index.

B. Selecting the right distance with stability

Between-cluster stability can be used to select a distance or
algorithm with appropriate invariances. An algorithm should
obtain a high between-cluster stability when perturbing the
data under invariant transformations. Concretely, we consider
the toy data set shown in Figure 1, and the widely used K-
medoids algorithm, where the number of clusters is fixed to
K = 2. For effective initialization, required by [17], we use K-
medoids++ initialization and take the best result over 10 runs.
In the first experiment, we assume the data is scale-invariant.
Thus, we use perturbation by randomly scaling the whole time
series by a factor drawn uniformely in the [1/(1 +¢),1 + €]
interval. The value ¢ controls the perturbation level, simi-
larly to the noise level in [17]. Then, we evaluate between-
cluster stability for three distances: Euclidean, correlation and
DTW. Figure 2 displays the resulting stability paths, and
unsurprisingly, correlation distance () -medoids+COR) is the
most stable. The second experiment assumes shift-invariance
of the data. The whole time series are shifted temporally by a
fraction of the time series length, drawn uniformely in [0, €].
The perturbation level € now represents the maximum shift
length. The between-cluster stability paths now indicate that
K-medoids+DTW is the most stable algorithm.

This toy task is rather a sanity check, because one generally
knows in advance which invariances an algorithm satisfies, but
we can imagine more complex algorithms where invariances
are not clearly determined.

C. Selecting the number of clusters

The second model selection task is the selection of the
number of clusters K. First, we consider an artificial data set
consisting in one, two or three bumps located around three
different time locations in the series, displayed on Figure 3.
The desired invariance is warping invariance. Thus, the true
number of clusters is K = 3, corresponding to the number of
bumps.

We evaluate the K-medoids algorithm with DTW distance
using the Stadion criterion and warping perturbation, for
K =1...9. Warping level is controlled by two parameters:
first, o controls the maximum fraction of the series that will be
warped, and ¢ controls the warping level, drawn uniformely in
[1/(1+¢),1+¢€]. We fix @ = ¢ = 0.2. The hyperparameters
of Stadion are set to D = 10 and Q = {2...5} without
need for any tuning (see [17] for discussions on hyperparam-
eters). Stadion scores and standard deviations over D = 10
perturbations are shown on Figure 4. Clearly, our method has
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Fig. 2. Between-cluster stability paths under perturbation by random scaling
(top) and shifting (bottom) for the K-medoids algorithm, with euclidean
(EUC), correlation (COR) and dynamic time warping (DTW) distances. COR
is resilient to scaling and DTW is more resilient to shifting. € controls the
level of perturbation.
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Fig. 3. Artificial time series data set consisting in one, two or three bumps
at different locations, represented in the (number of bumps, locations) latent
factor space. Under the assumption of warping invariance, the true number of
clusters is 3, corresponding to the number of bumps.

selected the desired solution K = 3. This means that the
most natural structure is three clusters, with respect to the
considered algorithm and invariance. Whenever the algorithm
is not able to find any structure resilient to the perturbation,
our method outputs K = 1, i.e. the data is not clusterable.
This happens if we use Euclidean distance instead of DTW,
as shown in Figure 5. Interestingly, the second-best solution is
K =17, as there are 7 different configurations for the locations
of the bumps.

Experiments were then conducted on univariate data sets
from the UCR/UEA archive [47] (although our stability frame-
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Warp invariance (K-medoids/DTW)

Fig. 4. Stadion criterion with perturbation by random warping (here with
a =¢=0.2and D = 10) for the K-medoids algorithm with DTW distance,
for K =1...9. The correct solution K = 3 is selected.
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Fig. 5. Stadion criterion with perturbation by random warping for K-medoids
with Euclidean distance, for K = 1...9. Our method outputs K = 1,
meaning that the data is not clusterable w.r.t. the considered algorithm and
invariance.

work also applies in the multivariate case). We present results
for the CBF and Trace data sets, with two algorithms: K-
medoids+DTW and K -shape [34]. For each algorithm we keep
the best out of 10 runs. In order to speed up computations, we
use only a subsample of 50 time series with balanced ground-
truth class labels.

First, we evaluate K-medoids+DTW on CBF (see Figure 6).
We choose to perturbate the data by random shifting and
adding uniform noise, as CBF consists in three different
noisy shapes at different locations. As previously, the shifting
level is controlled by ¢, varied from O to 0.3 to obtain the
Stadion paths on Figure 7. The uniform noise is fixed and
drawn in [—0.3,0.3]. Choosing the right perturbation seems
to be a difficult task and to require profound knowledge of
the data set; however, it is not strictly necessary. On CBF,
warping invariance could also be correctly used, but shifting is
sufficient to discover the right structure. Results are presented
on Figure 7: our method successfully selects the solution
K = 3 (by taking the highest maximum or average Stadion
value over the path until e, as explained in [17]). It also
corresponds to the partition with the best ARI (ARI = 0.93).

A second experiment on the Trace data set with K-shape

Cluster 2 Cluster 3

Cluster 1

Partitions obtained on the CBF data set by K-medoids+DTW for
K = 3. The best solution w.r.t. the ARI is K = 3 (ARI = 0.93).

CBF - Random shifting + uniform noise (K-medoids/DTW)

o
IS
B I |
- 1

ARRARRAR

0.3

ouUu D wWwNR

0.1

0.0
0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00

Fig. 7. Stadion criterion for K-medoids+DTW on CBF under shifting and
uniform noise perturbation, evaluated for K = 1...6. (Top) Stadion paths as
a function of shifting level €. The solution is selected by the highest maximum
or average Stadion value. (Bottom) Stadion scores taken at € = 0.15 with
standard deviations over D = 10 perturbations.

presents a case where the algorithm cannot recover the ground-
truth partition (see Figure 8). We choose a warping-based
perturbation, with @ = ¢ and ep,x = 0.5, and evaluate
parameters K = 1...5 () > 5 produces clusters with too
few points). As can been seen on the results Figure 9, Stadion
selects the solution with K = 3, although the ground-truth
partitions has 4 clusters. However, two of the clusters cannot
be distinguished by K-shape, thus K = 3 is objectively the
best solution (as measured by ARI with ground-truth labels).
As a conclusion, our method evaluates the guality of a given
partition with respect to a given algorithm and a given set of
invariances, and yields sensible and interpretable results.

V. CONCLUSION AND FUTURE WORK

In this work, we introduced an invariance-guided criterion
for model selection in time series clustering. The method
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Fig. 8. Partitions obtained on the Trace data set by K-shape for K = 3
(top) and K = 4 (bottom). The algorithm is unable to recover the ground-
truth partition into 4 clusters. The best solution w.r.t. the ARI is K = 3
(ARI = 0.80), followed by K = 4 (ARI = 0.75).
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Fig. 9. Stadion criterion for K-shape on Trace under warping perturbation,
evaluated for K’ = 1...5. (Top) Stadion paths as a function of warping level

e. (Bottom) Stadion scores taken at € = 0.25 with standard deviations over
D = 10 perturbations.

is based on the principle that a good clustering is stable
under particular perturbations. We use prior knowledge on the
invariances of time series data to compute stability scores,
based on the recent stability difference criterion (Stadion).
Encouraging results were obtained on several toy and bench-
mark data sets, using well-known center-based time series
clustering algorithms. The criterion was able to correctly
determine the number of clusters given a set of invariances,

and provides an interpretable visualization tool called stability
paths. An important drawback is its high computational cost,
as it requires to run the algorithm multiple times for each
evaluated parameter. There is a need for efficient algorithms
or algorithms with an extension operator, able to assign new
points to clusters without re-training. The extended version
was not tackled in this paper and is left for future work.
Moreover, this implementation of within-cluster stability is not
valid for all classes of algorithms [17]. Future work will focus
on reducing the computational burden, and exploring more
complex data sets. Insights on data perturbations can be gained
from the vast literature on invariant transformations and data
augmentation. Finally, we are convinced that interesting links
could be made between clustering stability and adversarial
attacks [48].

ACKNOWLEDGMENT

This research was funded by the French agency for research
and technology (ANRT) through the CIFRE grant 2017/1279
and by Safran Aircraft Engines (Safran group). We used the
algorithm implementations of the tslearn library [49] for
K-shape, and sklearn-extra for K-medoids. The CBF
and Trace data sets were taken from the UCR/UEA archive
[47].

REFERENCES

[1] T. Warren Liao, “Clustering of time series data - A survey,” Pattern

Recognition, 2005.

S. Aghabozorgi, A. Seyed Shirkhorshidi, and T. Ying Wah, “Time-series

clustering - A decade review,” Information Systems, 2015. [Online].

Available: http://dx.doi.org/10.1016/j.i5.2015.04.007

[3] M. Verleysen and D. Francois, “The Curse of Dimensionality
in Data Mining,” in [WANN, 2005. [Online]. Available: http:
/Iwww.springerlink.com/index/n65tna6vwt3b1pw6.pdf

[4] H.J. Ng, Raymond T, “Efficient and Effective Clustering Data Mining
Methods for Spatial Data Mining,” in International Conference on Very
Large Data Bases (VLDB), 1994.

[5] S. Ben-David, U. Von Luxburg, and D. Pél, “A sober look at clustering
stability,” Lecture Notes in Computer Science, 2006.

[6] U. Von Luxburg, “Clustering stability: An overview,” Foundations and
Trends in Machine Learning, 2009.

[71 O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and 1. Perona,
“An extensive comparative study of cluster validity indices,” Pattern
Recognition, 2013.

[8] J. Neel, “Cluster analysis methods for speech recognition,” Ph.D. dis-
sertation, KTH, 2005.

[9] R. Baragona, “A simulation study on clustering time series with meta-
heuristic methods,” Quaderni di Statistica, 2001.

[10] E. A. Maharaj, “Clusters of time series,” Journal of Classification, 2000.

[11] D. Piccolo, “A Distance Measure for Classifying ARIMA Models,”
Journal of Time Series Analysis, 1990.

[12] C. Biernacki, G. Celeux, and G. Govaert, “Assessing a Mixture Model
for Clustering with Integrated Completed likelihood,” IEEE Transactions
on Pattern Analysis and Machine Learning, 2000.

[13] C. Bouveyron, E. Come, and J. Jacques, “The discriminative functional
mixture model for a comparative analysis of bike sharing systems,”
Annals of Applied Statistics, 2015.

[14] E. Goffinet, M. Lebbah, H. Azzag, and L. Giraldi, “Clustering de séries
temporelles par construction de dictionnaire,” in EGC, 2020.

[15] ——, “Autonomous Driving Validation With Model-Based Dictionary
Clustering,” in ECML-PKDD, 2020.

[16] M. Meila, “How to tell when a clustering is (approximately) correct
using convex relaxations,” in NeurIPS, 2018.

[2

—

9302



[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

(391

[40]

A. Mourer, F. Forest, M. Lebbah, H. Azzag, and J. Lacaille,
“Selecting the Number of Clusters K with a Stability Trade-
off: an Internal Validation Criterion,” 2020. [Online]. Available:
https://arxiv.org/abs/2006.08530

Q. Pan, X. Li, and L. Fang, “Data Augmentation for Deep Learning-
Based ECG Analysis,” Feature Engineering and Computational Intelli-
gence in ECG Monitoring, 2020.

B. Fu, F. Kirchbuchner, and A. Kuijper, “Data Augmentation for Time
Series : Traditional vs Generative Models on Capacitive Proximity Time
Series,” in ACM International Conference on PErvasive Technologies
Related to Assistive Environment (PETRA), 2020.

A. Fawzi, H. Samulowitz, D. Turaga, and P. Frossard, “Adaptive data
augmentation for image classification,” International Conference on
Image Processing (ICIP), 2016.

C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data
Augmentation for Deep Learning,” Journal of Big Data, 2019.
[Online]. Available: https://doi.org/10.1186/s40537-019-0197-0

B. J. Frey and N. Jojic, “Transformation-Invariant Clustering and Dimen-
sionality Reduction Using EM,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2000.

T. Monnier, T. Groueix, and M. Aubry, “Deep Transformation-Invariant
Clustering,” 2020. [Online]. Available: http://arxiv.org/abs/2006.11132
G. Marti, P. Very, P. Donnat, and F. Nielsen, “A proposal of a
methodological framework with experimental guidelines to investigate
clustering stability on financial time series,” International Conference
on Machine Learning and Applications (ICMLA), 2016.

G. Klassen, M. Tatusch, L. Himmelspach, and S. Conrad, “Fuzzy
Clustering Stability Evaluation of Time Series,” in Information
Processing and Management of Uncertainty in Knowledge-Based
Systems (IPMU). Springer International Publishing, 2020. [Online].
Available: http://dx.doi.org/10.1007/978-3-030-50146-4_50

V. Roth, T. Lange, M. Braun, and J. Buhmann, “A Resampling Approach
to Cluster Validation,” Compstat, 2002.

I. Farber, S. Giinnemann, H.-P. Kriegel, P. Kroger, E. Miiller, E. Schu-
bert, T. Seidl, and A. Zimek, “On Using Class-Labels in Evaluation of
Clusterings,” International Workshop on Discovering, Summarizing and
Using Multiple Clusterings (MultiClust), KDD, 2010.

H. Sakoe and S. Chiba, “Dynamic Programming Algorithm Optimization
for Spoken Word Recognition,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, 1978.

G. E. Batista, X. Wang, and E. Keogh, “A Complexity-Invariant
Distance Measure for Time Series,” in SIAM International Conference
on Data Mining, 2011. [Online]. Available: http://epubs.siam.org/doi/
abs/10.1137/1.9781611972818.60

R. Giusti and G. E. Batista, “An empirical comparison of dissimilarity
measures for time series classification,” Brazilian Conference on Intel-
ligent Systems (BRACIS), 2013.

L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Intro-
duction to Cluster Analysis. John Wiley & Sons, 1990.

F. Petitjean, A. Ketterlin, and P. Gangarski, “A global averaging method
for dynamic time warping, with applications to clustering,” Pattern
Recognition, 2011.

J. Yang and J. Leskovec, “Patterns of Temporal Variation in Online
Media,” in WSDM, 2011.

J. Paparrizos and L. Gravano, “k-Shape: Efficient and Accurate
Clustering of Time Series,” ACM SIGMOD, 2015. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2723372.2737793

J. Zakaria, A. Mueen, and E. Keogh, “Clustering time series using
unsupervised-shapelets,” in International Conference on Data Mining
(ICDM), 2012.

Q. Zhang, J. Wu, P. Zhang, G. Long, and C. Zhang, “Salient Subse-
quence Learning for Time Series Clustering,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2018.

P. Patel, E. Keogh, J. Lin, and S. Lonardi, “Mining motifs in massive
time series databases,” 2003.

J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: a Novel
Symbolic Representation of Time Series,” 2007. [Online]. Available:
http://cs.gmu.edu/~jessica/SAX_DAMI_preprint.pdf

P. Schifer, “The BOSS is concerned with time series classification in
the presence of noise,” Data Mining and Knowledge Discovery, 2015.
P. Schifer and U. Leser, “Multivariate Time Series Classification with
WEASEL + MUSE,” in ACM, 2016.

[41]

[42]

[43]

[44]

[45]

[46]

(47

[48]

[49]

9303

N. S. Madiraju, S. M. Sadat, D. Fisher, and H. Karimabadi, “Deep
Temporal Clustering: Fully Unsupervised Learning of Time-Domain
Features,” 2018. [Online]. Available: http://arxiv.org/abs/1802.01059
Q. Ma, J. Zheng, S. Li, and G. W. Cottrell, “Learning Representations
for Time Series Clustering,” in NeurIPS, 2019.

V. Fortuin, M. Hiiser, F. Locatello, H. Strathmann, and G. Ritsch, “SOM-
VAE: Interpretable Discrete Representation Learning on Time Series,”
in International Conference on Learning Representations (ICLR), 2019.
L. Manduchi, M. Hiiser, G. Ritsch, and V. Fortuin, “Variational
PSOM: Deep Probabilistic Clustering with Self-Organizing Maps,”
2019. [Online]. Available: http://arxiv.org/abs/1910.01590

F. Chamroukhi and H. D. Nguyen, “Model-Based Clustering and
Classification of Functional Data,” Tech. Rep., 2018. [Online].
Available: http://arxiv.org/abs/1803.00276

L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classifica-
tion, 1985.

A. Bagnall, H. A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom,
P. Southam, and E. Keogh, “The UEA multivariate time series
classification archive, 2018,” 2018. [Online]. Available: http://arxiv.org/
abs/1811.00075

H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller,
“Adversarial Attacks on Deep Neural Networks for Time Series Classi-
fication,” in International Joint Conference on Neural Networks, 2019.
R. Tavenard, “tslearn: A machine learning toolkit dedicated to
time-series data,” 2017. [Online]. Available: https://github.com/rtavenar/
tslearn



