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Introduction



Statistical learning

Aircraft engine health monitoring
Monitoring the condition of an engine to increase availability and safety, while reducing
maintenance costs (e.g. condition-based or predictive maintenance). Knowledge of a machine’s
condition can be extracted from data.

Statistical learning

Supervised learning: {x, y}N1 ∈ (X × Y)N

▶ Classification (Y is discrete, e.g. Y = {−1,+1})

▶ Regression (Y is continuous, e.g. Y = R)
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Unsupervised learning

Aircraft engine health monitoring
Monitoring the condition of an engine to increase availability and safety, while reducing
maintenance costs (e.g. condition-based or predictive maintenance). Knowledge of a machine’s
condition can be extracted from data.

No labels (rare events)→ Unsupervised learning setting
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Unsupervised learning: {x}N1 ∈ X N

▶ Visualization, interpretability

▶ Clustering, trend monitoring, anomaly detection
▶ Dimensionality reduction and Representation
learning
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Overview of clustering

Clustering
The goal of data clustering is to discover the natural grouping of a set of […] objects [Jain, 2010].
Partitioning of data into groups so that similar elements share the same cluster and dissimilar
elements are separated into different clusters [Ben-David, 2018].

↑ Partitive, prototype-based methods (e.g. K-means)

{xi}N1 , xi ∈ RP,K −→ {mk}K1 ,mk ∈ RP, CK = {Ck}K1 , ∀x ∈ RP x ∈ Ck ⇐⇒ argminj ||x−mj||2 = k
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Overview of clustering

Clustering
The goal of data clustering is to discover the natural grouping of a set of […] objects [Jain, 2010].
Partitioning of data into groups so that similar elements share the same cluster and dissimilar
elements are separated into different clusters [Ben-David, 2018].

↑ Hierarchical methods (e.g. agglomerative HC)
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Overview of clustering

Clustering
The goal of data clustering is to discover the natural grouping of a set of […] objects [Jain, 2010].
Partitioning of data into groups so that similar elements share the same cluster and dissimilar
elements are separated into different clusters [Ben-David, 2018].

↑ Graph clustering
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Topology-preserving clustering algorithms

Topology-preserving maps
A topology-preserving algorithm is a transformation that
preserves similarities, or similarity orderings, of the
points in the input space when they are mapped into the
output space [Martinetz and Schulten, 1994].

Prototype-based methods inspired from biological cells:

▶ Self-Organizing Maps (SOM) [Kohonen, 1982]
▶ Neural Gas and growing cell structures

[Martinetz and Schulten, 1991, Fritzke, 1995]

▶ Probabilistic maps and Generative Topographic
Mapping [Anouar et al., 1998, Bishop et al., 1998]

▶ and many variants.
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Self-Organizing Maps

Distortion loss

LSOM({mk}K1 , {bi}N1 ) :=
1
N

N∑
i=1

K∑
k=1

KT (δ(bi, k)) ||xi −mk||22

Kohonen algorithm:
1. Find best-matching unit bi = argmink||xi − mk||22
2. Update each prototype vector mk ← mk + αKT (δ(bi, k)) (xi − mk)

3. Decrease temperature (neighborhood radius) e.g. T(t) = Tmax
(

Tmin
Tmax

)t/iterations

whereKT(d) = e−d2/T2 and δ(·, ·) is the distance on the lattice (ℓ1)
x1 xi xN

mk

T

bi

δ

|| − |xi mk |22

(BMU)

▶ Neighborhood relationship between prototypes, organized as a low-dimensional lattice.
▶ Self-organization: competitive learning process inspired from biological cells.
▶ Visualization capabilities, interpretability and computational efficiency.
▶ Applied to aircraft engine health monitoring

[Cottrell et al., 2009, Côme et al., 2010a, Côme et al., 2010b, Côme et al., 2011, Faure et al., 2017].

Florent Forest — PhD defense Unsupervised Learning of Data Representations and Cluster Structures: Applications to Large-scale Health Monitoring of Turbofan Aircraft Engines 5/38



Research challenges

Subject: Unsupervised statistical learning methods and their applications to health monitoring of
aircraft engines at an industrial scale.

Theoretical challenges
1. How to learn representations to effectively cluster complex data?
Standard algorithms are ineffective on complex data sets (high-dimensional, noisy, redundant, correlated
features) because cluster structure is hidden in lower-dimensional subspaces or unobserved latent spaces.
→ Links between cluster structure and representation.
2. How to evaluate clustering algorithms?
→ Model selection and the very definition of structure in clustering.

Technical challenges
3. How to develop scalable engine health monitoring methodologies?
To be useful in industrial settings, methods must scale to massive amounts of data and be flexible.
→ Engineering challenges.
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Unsupervised representation learning
for self-organized clustering



High-dimensional data clustering

Dimensionality reduction (DR):

▶ Feature selection
▶ Feature transformation

▶ Linear DR: approximation by a hyperplane, e.g. principal component analysis (PCA)
▶ Non-linear DR: approximation by a lower-dimensional manifold [Lee and Verleysen, 2007]

Clustering with joint feature selection:
▶ Sparse subspace clustering [Elhamifar and Vidal, 2013]
▶ Sparse K-means [Witten and Tibshirani, 2010, Sun et al., 2012, Chavent et al., 2020], EM [Bouveyron et al., 2007]
▶ Subspace or weighted SOM [Kaly et al., 2004, Benabdeslem and Lebbah, 2007] and NG [Attaoui et al., 2020]

Clustering with joint linear DR:
▶ Projected and discriminative clustering (LDA)

[De Soete and Carroll, 1994, De La Torre and Kanade, 2006, Ding and Li, 2007, Ye, 2007, Wang et al., 2019]
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Representation learning and clustering

Non-linear DR using feature learning with neural networks (deep learning) [Bengio, 2012]

▶ Supervised RL:

X −→
representation learning

Z −→
classification/regression

Y

Minimize error of predictor f̂ : L(̂f(z), y)
▶ Unsupervised RL:

X −→
representation learning

Z

Optimize some representation quality criterion: LR(x, z)
▶ Deep clustering: consider RL and clustering as a joint task
and learn clustering-friendly representations.

X −→
representation learning

Z −→
clustering

CK

L(x, z, CK) := LR(x, z)︸ ︷︷ ︸
representation quality

+ γ︸︷︷︸
hyperparameter

LC(z, CK)︸ ︷︷ ︸
clustering loss
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Autoencoders

Autoencoder
Neural network trained to reconstruct its inputs in order to extract meaningful intermediate
representations.
1. encoder, mapping the input to a latent representation (code): z = fϕ(x) ∈ RL

2. decoder, mapping the code back to the input space: x̃ = gθ(z) ∈ RP

x z x~

encoder decoder

fϕ gθ

What is a good representation?

Maximize mutual information between x and z
max
ϕ,θ

Eqϕ(z|x) [log pθ(x|z)]→ min
ϕ,θ

1
N
∑N

i=1 ||xi − x̃i||22 (MSE)

▶ Linear: equivalent to PCA ▶ Non-linear deep AE

Regularization:
▶ Undercomplete
▶ Denoising

▶ Variational
▶ Sparsity, weight decay, etc.
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Literature timeline
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Deep Embedded SOM [Forest et al., 2019b, Forest et al., 2019a, Forest et al., 2020b]

Clustering 
 
 
 
 
 
 
 
 
 
 

Representation 
Learning

Self-Organizing 
Maps

DESOM

SOM

k-means

DEC
DCN VaDE

Autoencoders

Proposition
The Deep Embedded SOM (DESOM) performs joint training of a deep
autoencoder and a SOM.

▶ SOM prototypes are learned in latent space.
▶ Self-organization and representation learning are achieved as a joint task.
▶ The model is trained end-to-end using minibatch stochastic gradient descent
(SGD).

▶ The objective is to learn SOM-friendly representations.

LDESOM(We,Wd, {mk}K1 , {bi}N1 ) := LR(We,Wd) + γLSOM(We, {mk}K1 , {bi}N1 )

=
1
N

N∑
i=1

||x̃i − xi||22︸ ︷︷ ︸
MSE reconstruction loss

+γ
1
N

N∑
i=1

K∑
k=1

KT (δ(bi, k)) ||zi −mk||22︸ ︷︷ ︸
SOM distortion loss
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DESOM architecture and gradients flow

LDESOM(We,Wd, {mk}K1 , {bi}N1 ) = LR(We,Wd) + γLSOM(We, {mk}K1 , {bi}N1 )

=
1
N

N∑
i=1

||x̃i − xi||22 + γ
1
N

N∑
i=1

K∑
k=1

KT (δ(bi, k)) ||zi −mk||22

in
pu
t

L

z

x

encoder

We

decoder

Wd

re
co
ns
tr
uc
tio
n

x
~

LR

γLSOM
SOM layer

mk

∂LR

∂Wd

γ
∂LSOM

∂mkγ
∂LSOM

∂We

∂LR

∂We

Training procedure

▶ Initialize We, Wd, {mk}K1
▶ Iterate following steps:

1. Load next training batch
2. Encode batch using encoder
3. T← Tmax (Tmin/Tmax)t/iterations
4. Compute and fix the weight terms

wi,k = KT (δ(bi, k))
5. Update parameters We, Wd, {mk}
by taking a SGD step
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Convergence of the model

lim
T→0

LDESOM(We,Wd, {mk}K1 , {bi}N1 ) =
1
N

N∑
i=1

||x̃i − xi||22 + γ
1
N

N∑
i=1

||zi −mbi ||
2
2

= LR(We,Wd) + γLK-means(We, {mk}K1 , {bi}N1 )

At the end of training, DESOM converges to the Deep Clustering Network (DCN) [Yang et al., 2017].

T

Tmin

Tmax

iterations

DESOM

SOM

DCN

K-means

lim
T→0
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Data sets

4 benchmark data sets:

▶ MNIST: grayscale images of handwritten digits (28-by-28 pixels).
Ntrain = 60000/Ntest = 10000, P = 784, K⋆ = 10

▶ Fashion-MNIST: grayscale images of clothing (28-by-28 pixels).
Ntrain = 60000/Ntest = 10000, P = 784, K⋆ = 10

▶ USPS: grayscale images of handwritten digits (16-by-16 pixels).
Ntrain = 7291/Ntest = 2007, P = 256, K⋆ = 10

▶ Reuters-10k: text data set built from the RCV1-v2 corpus (English
news stories), classified in 4 categories, using 2000 TF-IDF features.
Ntrain = 7769/Ntest = 2231, P = 2000, K⋆ = 4
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Example DESOM visualizations

Figure 1: DESOM maps with decoded prototypes for MNIST and Fashion-MNIST data sets.
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Clustering performance

Table 1: Purity and NMI. Best result underlined and results with no significant difference in bold.
MNIST Fashion-MNIST USPS Reuters-10k

Method Pur NMI Pur NMI Pur NMI Pur NMI

K-means (K = 64) 0.845 0.581 0.718 0.514 0.858 0.598 0.895 0.439
AE+K-means (K = 64) 0.946 0.672 0.764 0.548 0.874 0.611 0.856 0.392

SOM (8× 8) 0.832 0.576 0.712 0.513 0.848 0.595 0.554 0.225
AE+SOM (8× 8) 0.935 0.666 0.758 0.542 0.849 0.611 0.782 0.323
DESOM-AE+SOM (8× 8) 0.933 0.655 0.756 0.543 0.852 0.589 0.799 0.355
DESOM (8× 8) 0.934 0.658 0.751 0.541 0.857 0.592 0.808 0.364

SOM-VAE [Fortuin et al., 2019] (8× 8) 0.868 0.595 0.739 0.520 - - - -
DPSOM [Manduchi et al., 2020] (8× 8) 0.964 0.705 0.764 0.571 - - - -

Table 2: Unsupervised clustering accuracy.
Method MNIST Fashion-MNIST USPS Reuters-10k

K-means (K = #classes) 0.533 0.549 0.660 0.589
AE+K-means (K = #classes) 0.801 0.489 0.680 0.538

SOM (8× 8) + HC 0.598 0.491 0.666 0.439
AE+SOM (8× 8) + HC 0.791 0.480 0.649 0.441
DESOM-AE+SOM (8× 8) + HC 0.721 0.553 0.610 0.467
DESOM (8× 8) + HC 0.810 0.571 0.698 0.486
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Stability analysis for model selection in
clustering



Model selection in clustering

Clustering validation
Evaluating results of cluster analysis in a quantitative and objective fashion [Roth et al., 2002], in order to
select the right number of clusters K in a data set, or to tune any parameter of a clustering algorithm.

The objective of clustering is ill-defined [Kleinberg, 2003, von Luxburg et al., 2012, Shalev-Shwartz and Ben-David, 2013]

→ Challenging problem!

▶ Ground-truth labels: External indices (e.g. ARI, NMI…)
▶ No labels: Internal indices (see [Arbelaitz et al., 2013, Desgraupes, 2013])

1. Within/between-cluster distance ratios (compactness VS separateness)
e.g. Calinski-Harabasz, Davies-Bouldin, Dunn, Silhouette…
→ Explicit geometrical prior, algorithm-specific

2. Model-based likelihood criteria (AIC, BIC, ICL [Biernacki et al., 2000])
3. Statistical robustness: cluster stability analysis
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Cluster stability analysis

Stability principle
A good clustering is a stable structure in the data (̸= algorithmic or sampling artifact).
A clustering algorithm A applied repeatedly (with the same parameter K) to perturbed versions
of a data set should find the same structure and obtain similar results.

Stab(A,K) := EX,X′∼PN
[
s(CK, C′K)

]
where s is a similarity measure between partitions.

How to estimate stability in practice?

1. Generate several samples from the data set (sampling, noise).
2. Apply the clustering algorithm on each sample.
3. Measure similarities between the obtained partitions.
4. Aggregate these similarities into a stability score.
5. Select the best solution using a decision rule.

Numerous approaches and theoretical works. See [Von Luxburg, 2009] for a review.
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Literature timeline
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Sampling methods (split, subsample, bootstrap, CV...)
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Jumping VS jittering

Sources of instability

▶ Jumping: algorithm ends up in local minima, yielding very different solutions.

▶ Jittering: cluster boundaries jitter in high-density regions, causing points to change clusters.

s( , ) = 0.99CK C
′
K

s( , ) = 0.42CK C
′
K

reference clustering
perturbed clustering
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Stadion: a criterion based on a stability trade-off [Mourer et al., 2020]

Our setting
▶ No perfect symmetries in the distribution
▶ Effective initialization strategy (e.g. best of n runs)
▶ N≫ K

In this setting,
1. Jittering is the main source of instability.
2. Sampling perturbation is ineffective.
3. Stability is unable to detect K < K⋆.

based on [Ben-David et al., 2006, Ben-David and Von Luxburg, 2008, Von Luxburg, 2009]

Proposition
A clustering is a partitioning of data into groups so that the partition is stable, and within each
cluster, there exists no stable partition.

Stadion(A,K, CK,Ω)︸ ︷︷ ︸
Stability difference criterion

:= StabB(A,K, CK)︸ ︷︷ ︸
Between-cluster stability

− StabW(A,K, CK,Ω)︸ ︷︷ ︸
Within-cluster stability

∈ [−1, 1]

▶ Only additive noise perturbation is reliable (uniform or Gaussian)
▶ Empirical methodology to estimate StabW and vary the level of noise ε → ”stability paths”
▶ Extensive discussion and hyperparameter studies in [Mourer et al., 2020]
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Usage example: stability paths

(a) K = 2 (stable) (b) K = 3 (stable) (c) K = 4 (unstable, jittering)
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Figure 2: Between-cluster and within-cluster stability and Stadion paths for K-means, K ∈ {1 . . . 6}.
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Is a data set clusterable?

Most indices are undefined for K = 1.
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Figure 3: Golfball data set and Stadion paths for K-means, K ∈ {1 . . . 6}.
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Benchmark results

Table 3: Benchmark results on 80 artificial and real data sets for K-means, Ward linkage and GMM. Average
rank of ARI (RARI) and number of correctly selected K⋆ (wins).

Artificial data sets Real data sets
K-means Ward GMM K-means Ward GMM

Method RARI wins RARI wins RARI wins RARI wins RARI wins RARI wins

K⋆ 6.47 73 4.77 73 5.05 73 4.50 7 3.36 7 3.93 7

Stadion-max 6.02 50 5.25 54 - - 4.93 5 5.86 4 - -
Stadion-mean 6.12 51 5.80 49 - - 6.57 4 7.64 3 - -
Stadion-max (extended) 6.13 56 - - 5.59 56 6.29 3 - - 4.43 5
Stadion-mean (extended) 6.42 48 - - 6.79 43 6.29 3 - - 5.50 3
BIC - - - - 6.45 48 - - - - 7.29 2
Wemmert-Gançarski 6.62 53 5.40 54 5.77 52 6.00 5 5.36 4 5.79 4
Silhouette 7.51 46 6.47 45 7.01 45 7.21 4 5.86 4 6.50 4
[Lange et al., 2004] 7.93 45 6.53 51 6.99 48 8.64 3 5.86 4 7.14 3
Davies-Bouldin 8.11 40 6.45 41 7.29 34 8.29 4 7.29 3 8.57 3
Ray-Turi 8.19 37 6.97 40 7.68 33 8.29 4 6.29 3 7.36 4
Calinski-Harabasz 8.71 41 7.14 39 7.43 37 12.21 1 8.86 1 5.79 3
Dunn 10.11 26 7.77 33 7.92 34 10.57 1 7.79 2 9.07 2
Xie-Beni 10.27 22 7.61 34 8.19 28 11.50 1 7.57 2 9.93 2
Gap statistic 10.38 26 - - - - 10.57 2 - - - -
[Ben-Hur et al., 2002] 10.99 20 7.86 31 8.85 28 8.14 1 7.93 2 9.71 2
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In this defense… (intermediate summary)

1. How to learn representations to effectively cluster complex data?
Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2019). Deep Embedded SOM: Joint Representation Learning and
Self-Organization. In ESANN 2019.
Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2019). Deep Architectures for Joint Clustering and Visualization with
Self-Organizing Maps. In Workshop LDRC, PAKDD 2019.
Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2020). Carte SOM profonde : Apprentissage joint de représentations et
auto-organisation. In CAp: Conférence d’Apprentissage 2020.
Journal submission (under review).

2. How to evaluate clustering algorithms?
Mourer, A., Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2020). Selecting the Number of Clusters K with a Stability
Trade-off: an Internal Validation Criterion. arXiv:2006.08530 (under review).
Forest, F., Mourer, A., Lebbah, M., Azzag, H., & Lacaille, J. (2021). An Invariance-guided Stability Criterion for Time Series
Clustering Validation. In ICPR 2020.
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Scalable aircraft engine health
monitoring applications



The need to scale

Volume, Velocity:
▶ Growth of air traffic
▶ Aircraft equipped with more sensors, high-frequency
temporal data

Variety:
▶ Multiple data sources: production, tests, flights,
maintenance, weather…

▶ Time series, geospatial, images (2D/3D), text…
Value:

▶ Fly-by-the-hour leasing contracts→ engine
manufacturers responsible for maintenance
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Scaling to Big Data with distributed computing

Then…

10100110

Query and 
download

…and now

1000101001011010 1010101011010010 1000101001011010

Submit application

1. Send application to the data, avoid data
transfer (locality)

2. Distributed, data-parallel processing
(Map-Reduce, functional programming)

2.1 Map
2.2 Shuffle
2.3 Reduce

3. Obtain results

▶ ML algorithms can often be expressed in this paradigm [Aggarwal and Reddy, 2013, Sarazin et al., 2014]
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A generic and scalable analytics pipeline [Forest et al., 2018]

Objectives

▶ Provide generic tools enabling engineers to deploy domain-specific algorithms at scale
across millions of flights stored on a cluster

▶ Scale health monitoring methodologies to produce value by leveraging Big Aircraft Data

Flight 
data

Flight 
features

Meta 
data

Model 
results

Flexible 
configuration

Preprocessing Feature extraction ML Algorithms Visualization
applications

ingestion insights

Domain
knowledge

Custom 
algorithms

Implemented methodology: Fleet monitoring with Self-Organizing Maps
Monitoring fleets of engines using SOM based on indicators describing the state of an engine (or
its subsystems) at each flight, following [Cottrell et al., 2009, Côme et al., 2010a, Côme et al., 2011].
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Vibration monitoring use case [Forest et al., 2020a]

Vibration monitoring

▶ Crucial part of condition monitoring for rotating equipment
[Randall, 2011, Bastard et al., 2016]

▶ Detection of unbalance, misalignment due to wear (blades,
bearings, gears), rotor/stator contact, etc.

Proposition
Methodology for large-scale vibration monitoring of a fleet of aircraft engines using historical
flight recorder data.

1. Massive extraction of time-domain vibration signatures using distributed processing.
2. Unsupervised learning with self-organizing maps for clustering and visualization.

! Monitoring, alerting, forecasting % Diagnosis and prognosis are left to experts
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Vibration sensors Flight
data

Flight
features

Meta
data

Model
results

Preprocessing Feature extraction ML Algorithms Visualization
applications

Bearing #1

N2 sensor

N1 sensor

ACC1 sensor

Turbine rear frame

ACC2 sensor

Sensors measure rotation speeds and vibration peak
amplitude (displacement, speed or acceleration). Raw
signals are filtered and downsampled by the onboard
calculator.

Variables
▶ N1: LP shaft rotation speed @66Hz
▶ N2: HP shaft rotation speed @66Hz
▶ LP-ACC1, LP-ACC2: vibration amplitude at N1 speed @4Hz
▶ HP-ACC1, HP-ACC2: vibration amplitude at N2 speed @4Hz

~400 engines, ~100k flights, ~1 TB of data
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Vibration signatures Flight
data

Flight
features

Meta
data

Model
results

Preprocessing Feature extraction ML Algorithms Visualization
applications

Vibratory response of the engine: vibration amplitude as a function of regime.
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Vibration profiles SOM Flight
data

Flight
features

Meta
data

Model
results

Preprocessing Feature extraction ML Algorithms Visualization
applications

▶ -distributed implementation of batch SOM
▶ SOM units associated to prototype vibration
signatures, representing vibration profiles

▶ Self-organization→ smooth variations of factors
of variations, interpretability

▶ Flight are clustered by projecting on the nearest
vibration profile (Best-Matching Signature)

Figure 4: Signature map (HP-ACC2 vs N2).
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Vibration profiles SOM — Results analysis Flight
data

Flight
features

Meta
data

Model
results

Preprocessing Feature extraction ML Algorithms Visualization
applications

Vibration signatures describe intrinsic properties of an engine.
▶ Every engine is different!
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Figure 5: Heatmaps of projection counts for 3 different engines.
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Vibration profiles SOM — Methodology Flight
data

Flight
features

Meta
data

Model
results

Preprocessing Feature extraction ML Algorithms Visualization
applications

▶ Classification into higher-level vibration profiles by
clustering the prototypes

▶ Expert labelling of map regions (e.g. well-balanced
engines, unbalanced ones, switched off sensors, etc.)

▶ Distance to map→ Anomaly score
▶ Analysis of the evolution of an engine flight after
flight: engine trajectory (see [Côme et al., 2011])

▶ Sudden jumps or progressive trends may detect
abnormal wear

▶ Find similar engines, forecast future trajectories
(post-finding)

▶ Periodically re-train with up-to-date flight data, to
account for new trends and aging of the fleet.

3 683657651615521Flight 187 455

184 2 266 2 64 2 92 2 34 2 4 2 24
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Conclusion and perspectives



In this defense…

1. How to learn representations to effectively cluster complex data?
2. How to evaluate clustering algorithms?
3. How to develop scalable engine health monitoring methodologies?

Forest, F., Lacaille, J., Lebbah, M., & Azzag, H. (2018). A Generic and Scalable Pipeline for Large-Scale Analytics of
Continuous Aircraft Engine Data. In IEEE International Conference on Big Data 2018.
Forest, F., Cochard, Q., Noyer, C., Cabut, A., Joncour, M., Lacaille, J., Lebbah, M. & Azzag, H. (2020). Large-scale Vibration
Monitoring of Aircraft Engines from Operational Data using Self-organized Models. In Annual Conference of the PHM
Society 2020.
Lacaille, J. & Forest, F. (2020). Computer environment system for monitoring aircraft engines. Patent FR3089501.
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Perspectives and future work

Deep Embedded SOM:
▶ Explore different AE architectures and more complex data sets
▶ Study interactions of neighborhood decay with learning
▶ Automatic hyperparameter tuning

Model selection & stability analysis:
▶ Speed up computation of Stadion (distance to boundaries)
▶ Extend estimation of within-cluster stability to all clustering algorithms
▶ Develop theoretical results, links with existing indices and adversarial attacks
▶ Confidence in the quality of unsupervised algorithms results

Industrial applications:
▶ Extract more variables from vibration signatures, add context parameters
▶ Put these tools into the hands of more people and extend methodology to other use cases
▶ Combine with other data sources (production, tests, maintenance, weather)
▶ Learn the actual state of an engine (integrated over its lifetime)
▶ Learn a transition model between states
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Additional contributions

Open-source software to take home
▶ DESOM ⌊ github.com/FlorentF9/DESOM⌉

▶ DeepTemporalClustering ⌊ github.com/FlorentF9/DeepTemporalClustering⌉

▶ SOMperf ⌊ github.com/FlorentF9/SOMperf⌉

▶ skstab ⌊ github.com/FlorentF9/skstab⌉

▶ Spark ML SOM ⌊ github.com/FlorentF9/sparkml-som⌉

Teaching

▶ SupGalilée (2018, 2019, 2020)
▶ ISAE-Supaero (2019)

Scientific outreach

▶ Organization of 1st workshop on Large-Scale Industrial Time Series Analysis (LITSA) @ IEEE ICDM 2020
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Thank you for your attention!

Huge thanks to:

▶ The jury members
▶ Safran and ANRT for supporting this project
▶ All my colleagues and collaborators
▶ My thesis supervisors
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Appendix menu

1. Appendix 1 — Representation learning for self-organized clustering Go to

2. Appendix 2 — Model selection in clustering Go to

3. Appendix 3 — Scalable aircraft engine health monitoring applications Go to
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Deep clustering baselines

Table 4: Deep clustering baselines on benchmark data sets (% clustering accuracy).

Method MNIST Fashion-MNIST USPS Reuters-10k

K-means 53.3 54.9 66.0 58.9

AE + K-means 80.1 48.9 68.0 53.8

GMVAE [Dilokthanakul et al., 2017] 82.3 - - -
DCN [Yang et al., 2017] 83.0 - - 80.0
DKM [Fard et al., 2018] 84.0 - 75.7 58.3
DEC [Xie et al., 2016] 86.6 51.8 74.1 73.7
IDEC [Guo et al., 2017] 88.1 52.9 76.1 75.6
VaDE [Jiang et al., 2017] 94.5 - 56.6 79.8
ClusterGAN [Mukherjee et al., 2019] 95.0 63.0 - -
JULE [Yang et al., 2016] 96.1 56.3 95.0 -
DEPICT [Dizaji et al., 2017] 96.3 39.2 89.9 -
WaMiC [Harchaoui et al., 2019] 97.3 - - 79.8
Dual AE [Yang et al., 2019] 98.0 66.2 86.9 -
GAR [Kilinc and Uysal, 2018] 98.3 - 96.5 -
IMSAT [Hu et al., 2017] 98.4 - 71.0

Back to menu
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Deep Clustering Network (DCN)

Several methods based on (soft) K-means [Song et al., 2014, Xie et al., 2016, Guo et al., 2017, Fard et al., 2018].

DCN [Yang et al., 2017]

L(We,Wd, {mk}K1 , {bi}N1 ) := LR(We,Wd) + γLK-means(We, {mk}K1 , {bi}N1 ) where bi := argmin
k
||zi −mk||2

=
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Alternating procedure:
1. Update cluster assignments
2. Jointly update network parameters and centroids

Back to menu
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Comparison with other deep SOM approaches

Table 5: Comparison of the properties of deep SOM models.

Model Latent space AE Rec. loss SOM loss Neighborhood Joint Pretraining

Deep neural maps [Pesteie et al., 2018] continuous AE MSE KL+SOM Gaussian ! !

DASOM [Ferles et al., 2018] continuous DAE MSE SOM - ! !

ConvSOM [Elend and Kramer, 2019] continuous AE MSE SOM Gaussian % !

DESOM [Forest et al., 2019b] continuous AE MSE SOM Gaussian ! %

SOM-VAE [Fortuin et al., 2019] discrete VQ-VAE ELBO VQ+SOM fixed ! !

DPSOM [Manduchi et al., 2020] continuous VAE ELBO KL+SOM fixed ! !

Back to menu
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Visualizing DESOM during training

Figure 6: (Top) DESOM decoded prototypes and (bottom) UMAP visualization of latent space after 0, 10, 20 and
40 training epochs.

Back to menu
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Comparison of DESOM with SOM

Figure 7: SOM (left) and DESOM (right) maps of the MNIST data set.

Back to menu
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Comparison of DESOM with SOM

Figure 8: SOM (left) and DESOM (right) maps of the Fashion-MNIST data set.

Back to menu
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Comparison of DESOM with VAE latent space

Figure 9: DESOM map (left) and VAE latent space visualization (right) for MNIST.

Back to menu
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Properties of SOM-regularized latent space

Comparison of quantization/topographic/combined errors and topographic product.
Table 6: In original space:

Method QE TE CE TP
MNIST

SOM 5.345 0.518 15.78 -0.073
DESOM 5.848 0.597 21.74 -0.104

Fashion-MNIST

SOM 4.537 0.477 12.40 -0.026
DESOM 4.755 0.536 15.22 -0.046

USPS

SOM 3.693 0.474 10.35 -0.055
DESOM 4.025 0.556 14.62 -0.082

Reuters-10k

SOM 42.70 0.595 102.4 -0.206
DESOM 41.81 0.754 113.8 -0.147

Table 7: In latent space:
Method Q̂E T̂E ĈE T̂P

MNIST

AE+SOM 1.231 0.510 4.429 -0.066
DESOM-AE+SOM 0.205 0.514 0.713 -0.055
DESOM 0.205 0.534 0.727 -0.057

Fashion-MNIST

AE+SOM 0.960 0.532 3.973 -0.059
DESOM-AE+SOM 0.166 0.572 0.664 -0.044
DESOM 0.167 0.556 0.661 -0.045

USPS

AE+SOM 3.926 0.689 19.88 -0.098
DESOM-AE+SOM 0.278 0.554 1.174 -0.065
DESOM 0.280 0.563 1.184 -0.069

Reuters-10k

AE+SOM 30.00 0.934 270.7 -0.146
DESOM-AE+SOM 0.527 0.710 3.391 -0.071
DESOM 0.524 0.696 3.102 -0.069
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Hyperparameter influence studies

Table 8: Impact of DESOM hyperparameters.

Clustering metric Map metric
Parameter Notation Selected value Studied range Pur NMI QE TE

Gamma γ 10−3 10−4 − 100 ⇓ ⇓ ⇓ ⇑
Latent code dimension L 10 2− 100 ∩ ∩ ∅ ∅
Map size - 8× 8 5× 5− 20× 20 ⇑ ⇓ ⇓ ⇑
Initial temperature Tmax 8.0 0.1, 8.0 ∅ ∅ ∅ ⇓
Batch size nb 256 16− 256 ⇑ ⇑ ∅ ∅

”When <parameter> increases, <metric> ⇑ increases, quality becomes better.”
⇓ decreases, worse.”
∩ has an optimal value.”
∅ is not significantly impacted.”

AE pre-training and SOM initialization do not improve performance.
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Sources of instability

References:
[1] Ben-David and von Luxburg (2006)
[2] Ben-David and von Luxburg (2008)
[3] von Luxburg (2010)
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Figure 10: Diagram explaining sources of instability in different settings for K-means.
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Whenever K⋆ is not the best partition

(a) K = 2 (ARI = 0.74) (b) K = 3 (ARI = 0.92) (c) K⋆ = 4 (ARI = 0.58) (d) K = 5 (ARI = 0.65)

K ARI StabB StabW Stadion

1 0.00 ++ - - 0 %
2 0.74 ++ - + %
3 0.92 ++ + +++!
4 0.58 - - + - %
5 0.65 - - ++ 0 %
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Benchmark results
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Figure 11: CD diagram after Wilcoxon-Holms test on ARI performance across 73 artificial data sets for K-means,
Ward, and GMM.
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Hyperparameter study

Stadion hyperparameters and conclusions:
▶ D ∈ {1, . . . , 10}

→ No significant influence
▶ noise: uniform or Gaussian

→ No significant influence
▶ Ω ∈ {2, 3, 5, 10, {2, . . . , 5}, {2, . . . , 10}, {10, . . . , 20}, {2, . . . 20}}

→ Best with {2, . . . , 5} or {2, . . . , 10}
▶ s ∈ {ARI1, ARI2, RI, FM, JACC, MI, AMI, VI, NVI, ID, NID, NMI1, NMI2,
NMI3, NMI4, NMI5}
→ No significant influence for most adjusted/normalized
measures
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Figure 12: fANOVA importance of
hyperparameters and their
interactions for Stadion-max
(top) and mean (bottom).
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Distributed machine learning

Distributed clustering algorithms [Aggarwal and Reddy, 2013]
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Vibration profiles SOM visualizations

Figure 13: SOM maps of signature 1, 2, 3 and 4 (LP-ACC1 vs N1, LP-ACC2 vs N1, HP-ACC1 vs N2, HP-ACC2 vs N2).
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