Unsupervised Learning of Data Representations and Cluster Structures

Applications to Large-scale Health Monitoring of Turbofan Aircraft Engines

Apprentissage non supervisé de représentations de données et structures de partitionnement Applications à la surveillance à grande échelle de turbofans

FLORENT FOREST

PhD defense

Université Sorbonne Paris Nord LIPN — CNRS UMR 7030 Safran Aircraft Engines

March 22, 2021

Introduction

Monitoring the **condition** of an engine to increase availability and safety, while reducing maintenance costs (e.g. *condition-based* or *predictive* maintenance). Knowledge of a machine's condition can be extracted from data.

Aircraft engine health monitoring

Monitoring the **condition** of an engine to increase availability and safety, while reducing maintenance costs (e.g. *condition-based* or *predictive* maintenance). Knowledge of a machine's condition can be extracted from data.

Statistical learning

Supervised learning: $\{\mathbf{x}, y\}_{1}^{N} \in (\mathcal{X} \times \mathcal{Y})^{N}$

• Classification (\mathcal{Y} is discrete, e.g. $\mathcal{Y} = \{-1, +1\}$)

Aircraft engine health monitoring

Monitoring the **condition** of an engine to increase availability and safety, while reducing maintenance costs (e.g. *condition-based* or *predictive* maintenance). Knowledge of a machine's condition can be extracted from data.

Statistical learning

Supervised learning: $\{\mathbf{x}, y\}_{1}^{N} \in (\mathcal{X} \times \mathcal{Y})^{N}$

• Classification (\mathcal{Y} is discrete, e.g. $\mathcal{Y} = \{-1, +1\}$)

Aircraft engine health monitoring

Monitoring the **condition** of an engine to increase availability and safety, while reducing maintenance costs (e.g. *condition-based* or *predictive* maintenance). Knowledge of a machine's condition can be extracted from data.

Statistical learning

Supervised learning: $\{\mathbf{x}, y\}_{1}^{N} \in (\mathcal{X} \times \mathcal{Y})^{N}$

• Classification (\mathcal{Y} is discrete, e.g. $\mathcal{Y} = \{-1, +1\}$)

Aircraft engine health monitoring

Monitoring the **condition** of an engine to increase availability and safety, while reducing maintenance costs (e.g. *condition-based* or *predictive* maintenance). Knowledge of a machine's condition can be extracted from data.

Statistical learning

- Classification (\mathcal{Y} is discrete, e.g. $\mathcal{Y} = \{-1, +1\}$)
- Regression (\mathcal{Y} is continuous, e.g. $\mathcal{Y} = \mathbb{R}$)

Aircraft engine health monitoring

Monitoring the **condition** of an engine to increase availability and safety, while reducing maintenance costs (e.g. *condition-based* or *predictive* maintenance). Knowledge of a machine's condition can be extracted from data.

Statistical learning

- Classification (\mathcal{Y} is discrete, e.g. $\mathcal{Y} = \{-1, +1\}$)
- Regression (\mathcal{Y} is continuous, e.g. $\mathcal{Y} = \mathbb{R}$)

Aircraft engine health monitoring

Monitoring the **condition** of an engine to increase availability and safety, while reducing maintenance costs (e.g. *condition-based* or *predictive* maintenance). Knowledge of a machine's condition can be extracted from data.

Statistical learning

- Classification (\mathcal{Y} is discrete, e.g. $\mathcal{Y} = \{-1, +1\}$)
- Regression (\mathcal{Y} is continuous, e.g. $\mathcal{Y} = \mathbb{R}$)

Aircraft engine health monitoring

Monitoring the **condition** of an engine to increase availability and safety, while reducing maintenance costs (e.g. *condition-based* or *predictive* maintenance). Knowledge of a machine's condition can be extracted from data.

Statistical learning

- Classification (\mathcal{Y} is discrete, e.g. $\mathcal{Y} = \{-1, +1\}$)
- Regression (\mathcal{Y} is continuous, e.g. $\mathcal{Y} = \mathbb{R}$)

Monitoring the **condition** of an engine to increase availability and safety, while reducing maintenance costs (e.g. *condition-based* or *predictive* maintenance). Knowledge of a machine's condition can be extracted from data.

No labels (rare events) \rightarrow Unsupervised learning setting

Unsupervised learning: $\{\mathbf{x}\}_{1}^{N} \in \mathcal{X}^{N}$

Visualization, interpretability

Monitoring the **condition** of an engine to increase availability and safety, while reducing maintenance costs (e.g. *condition-based* or *predictive* maintenance). Knowledge of a machine's condition can be extracted from data.

No labels (rare events) \rightarrow Unsupervised learning setting

Unsupervised learning: $\{\boldsymbol{x}\}_{1}^{N} \in \mathcal{X}^{N}$

- Visualization, interpretability
- **Clustering**, trend monitoring, anomaly detection

Monitoring the **condition** of an engine to increase availability and safety, while reducing maintenance costs (e.g. *condition-based* or *predictive* maintenance). Knowledge of a machine's condition can be extracted from data.

No labels (rare events) \rightarrow Unsupervised learning setting

Unsupervised learning: $\{\boldsymbol{x}\}_{1}^{N} \in \mathcal{X}^{N}$

- Visualization, interpretability
- **Clustering**, trend monitoring, anomaly detection
- Dimensionality reduction and Representation learning

The goal of data clustering is to discover the natural grouping of a set of [...] objects [Jain, 2010]. Partitioning of data into groups so that similar elements share the same cluster and dissimilar elements are separated into different clusters [Ben-David, 2018].

 $\{\mathbf{x}_i\}_1^N, \mathbf{x}_i \in \mathbb{R}^P, K \longrightarrow \{\mathbf{m}_k\}_1^K, \mathbf{m}_k \in \mathbb{R}^P, \mathcal{C}_K = \{C_k\}_1^K, \forall \mathbf{x} \in \mathbb{R}^P \ \mathbf{x} \in C_k \iff \operatorname{argmin}_j ||\mathbf{x} - \mathbf{m}_j||_2 = k$

The goal of data clustering is to discover the natural grouping of a set of [...] objects [Jain, 2010]. Partitioning of data into groups so that similar elements share the same cluster and dissimilar elements are separated into different clusters [Ben-David, 2018].

↑ Hierarchical methods (e.g. agglomerative HC)

The goal of data clustering is to discover the natural grouping of a set of [...] objects [Jain, 2010]. Partitioning of data into groups so that similar elements share the same cluster and dissimilar elements are separated into different clusters [Ben-David, 2018].

↑ Model-based methods

The goal of data clustering is to discover the natural grouping of a set of [...] objects [Jain, 2010]. Partitioning of data into groups so that similar elements share the same cluster and dissimilar elements are separated into different clusters [Ben-David, 2018].

 \uparrow Density-based methods

The goal of data clustering is to discover the natural grouping of a set of [...] objects [Jain, 2010]. Partitioning of data into groups so that similar elements share the same cluster and dissimilar elements are separated into different clusters [Ben-David, 2018].

↑ Graph clustering

A topology-preserving algorithm is a transformation that preserves similarities, or similarity orderings, of the points in the input space when they are mapped into the output space [Martinetz and Schulten, 1994].

A topology-preserving algorithm is a transformation that preserves similarities, or similarity orderings, of the points in the input space when they are mapped into the output space [Martinetz and Schulten, 1994].

Prototype-based methods inspired from biological cells:

Self-Organizing Maps (SOM) [Kohonen, 1982]

A topology-preserving algorithm is a transformation that preserves similarities, or similarity orderings, of the points in the input space when they are mapped into the output space [Martinetz and Schulten, 1994].

- Self-Organizing Maps (SOM) [Kohonen, 1982]
- Neural Gas and growing cell structures [Martinetz and Schulten, 1991, Fritzke, 1995]

A topology-preserving algorithm is a transformation that preserves similarities, or similarity orderings, of the points in the input space when they are mapped into the output space [Martinetz and Schulten, 1994].

- Self-Organizing Maps (SOM) [Kohonen, 1982]
- Neural Gas and growing cell structures
 [Martinetz and Schulten, 1991, Fritzke, 1995]
- Probabilistic maps and Generative Topographic Mapping [Anouar et al., 1998, Bishop et al., 1998]

A topology-preserving algorithm is a transformation that preserves similarities, or similarity orderings, of the points in the input space when they are mapped into the output space [Martinetz and Schulten, 1994].

- Self-Organizing Maps (SOM) [Kohonen, 1982]
- Neural Gas and growing cell structures [Martinetz and Schulten, 1991, Fritzke, 1995]
- Probabilistic maps and Generative Topographic Mapping [Anouar et al., 1998, Bishop et al., 1998]
- and many variants.

Self-Organizing Maps

Distortion loss

$$\mathcal{L}_{\text{SOM}}(\{\mathbf{m}_k\}_1^K, \{b_i\}_1^N) := \frac{1}{N} \sum_{i=1}^N \sum_{k=1}^K \mathcal{K}^T(\delta(b_i, k)) ||\mathbf{x}_i - \mathbf{m}_k||_2^2$$

Kohonen algorithm:

- 1. Find best-matching unit $b_i = \operatorname{argmin}_k ||\mathbf{x}_i \mathbf{m}_k||_2^2$ 2. Update each prototype vector $\mathbf{m}_k \leftarrow \mathbf{m}_k + \alpha \mathcal{K}^T \left(\delta(b_i, k) \right) (\mathbf{x}_i \mathbf{m}_k)$

3. Decrease temperature (neighborhood radius) e.g. $T(t) = T_{max} \left(\frac{T_{min}}{T_{max}}\right)^{t/\text{iterations}}$

where $\mathcal{K}^{T}(d) = e^{-d^{2}/T^{2}}$ and $\delta(\cdot, \cdot)$ is the distance on the lattice (ℓ_{1})

- **Neighborhood relationship** between prototypes, organized as a low-dimensional lattice.
- Self-organization: competitive learning process inspired from biological cells.
- Visualization capabilities, interpretability and computational efficiency.
- Applied to aircraft engine health monitoring [Cottrell et al., 2009, Côme et al., 2010a, Côme et al., 2010b, Côme et al., 2011, Faure et al., 2017].

Subject: Unsupervised statistical learning methods and their applications to health monitoring of aircraft engines at an industrial scale.

Subject: Unsupervised statistical learning methods and their applications to health monitoring of aircraft engines at an industrial scale.

Theoretical challenges

1. How to learn representations to effectively cluster complex data?

Standard algorithms are ineffective on complex data sets (high-dimensional, noisy, redundant, correlated features) because **cluster structure is hidden in lower-dimensional subspaces** or **unobserved latent spaces**.

- \rightarrow Links between cluster structure and representation.
- 2. How to evaluate clustering algorithms?
- \rightarrow Model selection and the very definition of structure in clustering.

Subject: Unsupervised statistical learning methods and their applications to health monitoring of aircraft engines at an industrial scale.

Theoretical challenges

1. How to learn representations to effectively cluster complex data?

Standard algorithms are ineffective on complex data sets (high-dimensional, noisy, redundant, correlated features) because **cluster structure is hidden in lower-dimensional subspaces** or **unobserved latent spaces**.

- \rightarrow Links between cluster structure and representation.
- 2. How to evaluate clustering algorithms?
- ightarrow Model selection and the very definition of structure in clustering.

Technical challenges

3. How to develop scalable engine health monitoring methodologies?

To be useful in industrial settings, methods must scale to massive amounts of data and be flexible.

 \rightarrow **Engineering** challenges.

1. Introduction

- 2. Unsupervised representation learning for self-organized clustering
- 3. Stability analysis for model selection in clustering
- 4. Scalable aircraft engine health monitoring applications

5. Conclusion and perspectives

Unsupervised representation learning for self-organized clustering

High-dimensional data clustering

Dimensionality reduction (DR):

- ► Feature selection
- ► Feature transformation
 - Linear DR: approximation by a hyperplane, e.g. principal component analysis (PCA)
 - ▶ Non-linear DR: approximation by a lower-dimensional manifold [Lee and Verleysen, 2007]

High-dimensional data clustering

Dimensionality reduction (DR):

- ► Feature selection
- Feature transformation
 - Linear DR: approximation by a hyperplane, e.g. principal component analysis (PCA)
 - ▶ Non-linear DR: approximation by a lower-dimensional manifold [Lee and Verleysen, 2007]

High-dimensional data clustering

Dimensionality reduction (DR):

- ► Feature selection
- Feature transformation
 - Linear DR: approximation by a hyperplane, e.g. principal component analysis (PCA)
 - ▶ Non-linear DR: approximation by a lower-dimensional manifold [Lee and Verleysen, 2007]

Joint dimensionality reduction and clustering

Clustering with joint feature selection:

- Sparse subspace clustering [Elhamifar and Vidal, 2013]
- Sparse K-means [Witten and Tibshirani, 2010, Sun et al., 2012, Chavent et al., 2020], EM [Bouveyron et al., 2007]
- Subspace or weighted SOM [Kaly et al., 2004, Benabdeslem and Lebbah, 2007] and NG [Attaoui et al., 2020]

Clustering with joint linear DR:

Projected and discriminative clustering (LDA)

[De Soete and Carroll, 1994, De La Torre and Kanade, 2006, Ding and Li, 2007, Ye, 2007, Wang et al., 2019]

Non-linear DR using feature learning with neural networks (deep learning) [Bengio, 2012]

Representation learning and clustering

Non-linear DR using feature learning with neural networks (deep learning) [Bengio, 2012]

Supervised RL:

$$\mathcal{X} \xrightarrow{}_{\text{representation learning}} \mathcal{Z} \xrightarrow{}_{\text{classification/regression}} \mathcal{Y}$$

Minimize error of predictor \hat{f} : $\mathcal{L}(\hat{f}(\mathbf{z}), y)$

 $\mathcal{Y} = \{\mathrm{cat}, \mathrm{dog}\}$

Representation learning and clustering

Non-linear DR using feature learning with neural networks (deep learning) [Bengio, 2012]

Supervised RL:

$$\mathcal{X} \xrightarrow{}_{\text{representation learning}} \mathcal{Z} \xrightarrow{}_{\text{classification/regression}} \mathcal{Y}$$

Minimize error of predictor \hat{f} : $\mathcal{L}(\hat{f}(\mathbf{z}), y)$

Representation learning and clustering

Non-linear DR using feature learning with neural networks (deep learning) [Bengio, 2012]

Supervised RL:

 $\begin{array}{c} \mathcal{X} & \underset{\text{representation learning}}{\longrightarrow} \mathcal{Z} & \underset{\text{classification/regression}}{\longrightarrow} \end{array}$ Minimize error of predictor $\hat{f} : \mathcal{L}(\hat{f}(\mathbf{z}), y)$

Unsupervised RL:

 $\mathcal{X} \xrightarrow[representation learning]{2}$

Optimize some representation quality criterion: $\mathcal{L}_{R}(\boldsymbol{x},\boldsymbol{z})$

Representation learning and clustering

Non-linear DR using feature learning with neural networks (deep learning) [Bengio, 2012]

► Supervised RL:

 $\begin{array}{c} \mathcal{X} & \underset{\text{representation learning}}{\longrightarrow} \mathcal{Z} & \underset{\text{classification/regression}}{\longrightarrow} \end{array}$ Minimize error of predictor $\hat{f} \colon \mathcal{L}(\hat{f}(\mathbf{z}), y)$

Unsupervised RL:

 $\mathcal{X} \xrightarrow[representation learning]{\mathcal{Z}}$

Optimize some representation quality criterion: $\mathcal{L}_{R}(\mathbf{x}, \mathbf{z})$

 Deep clustering: consider RL and clustering as a joint task and learn clustering-friendly representations.

$$\begin{array}{l} \mathcal{X} \underset{\text{representation learning}}{\longrightarrow} \mathcal{Z} \underset{\text{clustering}}{\longrightarrow} \mathcal{C}_{K} \\ \mathcal{L}(\mathbf{x}, \mathbf{z}, \mathcal{C}_{K}) := \underbrace{\mathcal{L}_{R}(\mathbf{x}, \mathbf{z})}_{\text{representation quality}} + \underbrace{\gamma}_{\text{hyperparameter clustering loss}} \underbrace{\mathcal{L}_{C}(\mathbf{z}, \mathcal{C}_{K})}_{\text{hyperparameter clustering loss}} \end{array}$$

Autoencoder

Neural network trained to reconstruct its inputs in order to extract meaningful intermediate representations.

- 1. encoder, mapping the input to a latent representation (code): $\mathbf{z} = \mathbf{f}_{\phi}(\mathbf{x}) \in \mathbb{R}^{L}$
- 2. **decoder**, mapping the code back to the input space: $\tilde{\mathbf{x}} = \mathbf{g}_{\theta}(\mathbf{z}) \in \mathbb{R}^{P}$

Autoencoder

Neural network trained to reconstruct its inputs in order to extract meaningful intermediate representations.

- 1. encoder, mapping the input to a latent representation (code): $\mathbf{z} = \mathbf{f}_{\phi}(\mathbf{x}) \in \mathbb{R}^{L}$
- 2. **decoder**, mapping the code back to the input space: $\tilde{\mathbf{x}} = \mathbf{g}_{\theta}(\mathbf{z}) \in \mathbb{R}^{P}$

What is a good representation?

Maximize mutual information between **x** and **z**

Autoencoder

Neural network trained to reconstruct its inputs in order to extract meaningful intermediate representations.

- 1. encoder, mapping the input to a latent representation (code): $\mathbf{z} = \mathbf{f}_{\phi}(\mathbf{x}) \in \mathbb{R}^{L}$
- 2. **decoder**, mapping the code back to the input space: $\tilde{\mathbf{x}} = \mathbf{g}_{\theta}(\mathbf{z}) \in \mathbb{R}^{P}$

What is a good representation?

Maximize mutual information between **x** and **z** $\max_{\boldsymbol{\phi},\boldsymbol{\theta}} \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z}) \right]$

Autoencoder

Neural network trained to reconstruct its inputs in order to extract meaningful intermediate representations.

- 1. encoder, mapping the input to a latent representation (code): $\mathbf{z} = \mathbf{f}_{\phi}(\mathbf{x}) \in \mathbb{R}^{L}$
- 2. **decoder**, mapping the code back to the input space: $\tilde{\mathbf{x}} = \mathbf{g}_{\theta}(\mathbf{z}) \in \mathbb{R}^{P}$

What is a good representation?

 $\begin{array}{l} \text{Maximize mutual information between } \textbf{x} \text{ and } \textbf{z} \\ \max_{\phi,\theta} \mathbb{E}_{q_{\phi}(\textbf{z}|\textbf{x})} \left[\log p_{\theta}(\textbf{x}|\textbf{z}) \right] \rightarrow \min_{\phi,\theta} \frac{1}{N} \sum_{i=1}^{N} ||\textbf{x}_{i} - \tilde{\textbf{x}}_{i}||_{2}^{2} \text{ (MSE)} \end{array}$

Autoencoder

Neural network trained to reconstruct its inputs in order to extract meaningful intermediate representations.

- 1. encoder, mapping the input to a latent representation (code): $\mathbf{z} = \mathbf{f}_{\phi}(\mathbf{x}) \in \mathbb{R}^{L}$
- 2. **decoder**, mapping the code back to the input space: $\tilde{\mathbf{x}} = \mathbf{g}_{\theta}(\mathbf{z}) \in \mathbb{R}^{P}$

What is a good representation?

 $\begin{array}{l} \text{Maximize mutual information between } \textbf{x} \text{ and } \textbf{z} \\ \max_{\phi,\theta} \mathbb{E}_{q_{\phi}(\textbf{z}|\textbf{x})} \left[\log p_{\theta}(\textbf{x}|\textbf{z}) \right] \rightarrow \min_{\phi,\theta} \frac{1}{N} \sum_{i=1}^{N} ||\textbf{x}_{i} - \tilde{\textbf{x}}_{i}||_{2}^{2} \text{ (MSE)} \end{array}$

Linear: equivalent to PCA

Autoencoder

Neural network trained to reconstruct its inputs in order to extract meaningful intermediate representations.

- 1. encoder, mapping the input to a latent representation (*code*): $\mathbf{z} = \mathbf{f}_{\phi}(\mathbf{x}) \in \mathbb{R}^{L}$
- 2. **decoder**, mapping the code back to the input space: $\tilde{\mathbf{x}} = \mathbf{g}_{\theta}(\mathbf{z}) \in \mathbb{R}^{P}$

What is a good representation?

Maximize mutual information between **x** and **z** $\max_{\phi,\theta} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] \rightarrow \min_{\phi,\theta} \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{x}_{i} - \tilde{\mathbf{x}}_{i}||_{2}^{2} (MSE)$

Linear: equivalent to PCA Non-linear deep AE

Autoencoder

Neural network trained to reconstruct its inputs in order to extract meaningful intermediate representations.

- 1. encoder, mapping the input to a latent representation (*code*): $\mathbf{z} = \mathbf{f}_{\phi}(\mathbf{x}) \in \mathbb{R}^{L}$
- 2. **decoder**, mapping the code back to the input space: $\tilde{\mathbf{x}} = \mathbf{g}_{\theta}(\mathbf{z}) \in \mathbb{R}^{P}$

What is a good representation?

Maximize mutual information between **x** and **z** $\max_{\phi,\theta} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] \rightarrow \min_{\phi,\theta} \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{x}_{i} - \tilde{\mathbf{x}}_{i}||_{2}^{2} (MSE)$

- Linear: equivalent to PCA
- ► Non-linear deep AE

Regularization:

Undercomplete

Autoencoder

Neural network trained to reconstruct its inputs in order to extract meaningful intermediate representations.

- 1. encoder, mapping the input to a latent representation (code): $\mathbf{z} = \mathbf{f}_{\phi}(\mathbf{x}) \in \mathbb{R}^{L}$
- 2. **decoder**, mapping the code back to the input space: $\tilde{\mathbf{x}} = \mathbf{g}_{\theta}(\mathbf{z}) \in \mathbb{R}^{P}$

What is a good representation?

Maximize mutual information between **x** and **z** $\max_{\phi,\theta} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] \rightarrow \min_{\phi,\theta} \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{x}_{i} - \tilde{\mathbf{x}}_{i}||_{2}^{2} \text{ (MSE)}$

- Linear: equivalent to PCA
- ► Non-linear deep AE

Regularization:

- Undercomplete
- Denoising

Autoencoder

Neural network trained to reconstruct its inputs in order to extract meaningful intermediate representations.

- 1. encoder, mapping the input to a latent representation (code): $\mathbf{z} = \mathbf{f}_{\phi}(\mathbf{x}) \in \mathbb{R}^{L}$
- 2. **decoder**, mapping the code back to the input space: $\tilde{\mathbf{x}} = \mathbf{g}_{\theta}(\mathbf{z}) \in \mathbb{R}^{P}$

What is a good representation?

Maximize mutual information between **x** and **z** $\max_{\phi,\theta} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] \rightarrow \min_{\phi,\theta} \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{x}_{i} - \tilde{\mathbf{x}}_{i}||_{2}^{2} \text{ (MSE)}$

- Linear: equivalent to PCA
- ► Non-linear deep AE

Regularization:

- Undercomplete
- Variational

Denoising

Autoencoder

Neural network trained to reconstruct its inputs in order to extract meaningful intermediate representations.

- 1. encoder, mapping the input to a latent representation (code): $\mathbf{z} = \mathbf{f}_{\phi}(\mathbf{x}) \in \mathbb{R}^{L}$
- 2. **decoder**, mapping the code back to the input space: $\tilde{\mathbf{x}} = \mathbf{g}_{\theta}(\mathbf{z}) \in \mathbb{R}^{P}$

What is a good representation?

Maximize mutual information between **x** and **z** $\max_{\phi,\theta} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] \rightarrow \min_{\phi,\theta} \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{x}_{i} - \tilde{\mathbf{x}}_{i}||_{2}^{2} \text{ (MSE)}$

- Linear: equivalent to PCA
- ► Non-linear deep AE

Regularization:

- Undercomplete
- Denoising

- Variational
- Sparsity, weight decay, etc.

Deep Embedded SOM [Forest et al., 2019b, Forest et al., 2019a, Forest et al., 2020b]

Proposition

The Deep Embedded SOM (DESOM) performs joint training of a **deep autoencoder** and a **SOM**.

- SOM prototypes are learned in latent space.
- Self-organization and representation learning are achieved as a **joint task**.
- The model is trained end-to-end using minibatch stochastic gradient descent (SGD).
- The objective is to learn SOM-friendly representations.

Deep Embedded SOM [Forest et al., 2019b, Forest et al., 2019a, Forest et al., 2020b]

Proposition

The Deep Embedded SOM (DESOM) performs joint training of a **deep autoencoder** and a **SOM**.

- SOM prototypes are learned in latent space.
- Self-organization and representation learning are achieved as a **joint task**.
- The model is trained end-to-end using minibatch stochastic gradient descent (SGD).
- The objective is to learn SOM-friendly representations.

$$\mathcal{L}_{\text{DESOM}}(\mathbf{W}_{\mathbf{e}}, \mathbf{W}_{\mathbf{d}}, \{\mathbf{m}_{k}\}_{1}^{K}, \{b_{i}\}_{1}^{N}) := \mathcal{L}_{\text{R}}(\mathbf{W}_{\mathbf{e}}, \mathbf{W}_{\mathbf{d}}) + \gamma \mathcal{L}_{\text{SOM}}(\mathbf{W}_{\mathbf{e}}, \{\mathbf{m}_{k}\}_{1}^{K}, \{b_{i}\}_{1}^{N})$$

$$= \underbrace{\frac{1}{N} \sum_{i=1}^{N} ||\mathbf{\tilde{x}}_{i} - \mathbf{x}_{i}||_{2}^{2}}_{\text{MSE reconstruction loss}} + \gamma \underbrace{\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} \mathcal{K}^{T}\left(\delta(b_{i}, k)\right) ||\mathbf{z}_{i} - \mathbf{m}_{k}||_{2}^{2}}_{\text{SOM distortion loss}}$$

DESOM architecture and gradients flow

 $\mathcal{L}_{\text{DESOM}}(\mathbf{W}_{\mathbf{e}}, \mathbf{W}_{\mathbf{d}}, \{\mathbf{m}_{k}\}_{1}^{K}, \{b_{i}\}_{1}^{N}) = \mathcal{L}_{\text{R}}(\mathbf{W}_{\mathbf{e}}, \mathbf{W}_{\mathbf{d}}) + \gamma \mathcal{L}_{\text{SOM}}(\mathbf{W}_{\mathbf{e}}, \{\mathbf{m}_{k}\}_{1}^{K}, \{b_{i}\}_{1}^{N})$ $= \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{\tilde{x}}_{i} - \mathbf{x}_{i}||_{2}^{2} + \gamma \frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} \mathcal{K}^{\mathsf{T}}\left(\delta(b_{i}, k)\right) ||\mathbf{z}_{i} - \mathbf{m}_{k}||_{2}^{2}$

Training procedure

- Initialize $\mathbf{W}_{\mathbf{e}}, \mathbf{W}_{\mathbf{d}}, \{\mathbf{m}_k\}_1^K$
- Iterate following steps:
 - 1. Load next training batch
 - 2. Encode batch using encoder
 - 3. $T \leftarrow T_{max} (T_{min}/T_{max})^{t/iterations}$
 - 4. Compute and fix the weight terms $w_{i,k} = \mathcal{K}^T (\delta(b_i, k))$
 - Update parameters W_e, W_d, {m_k} by taking a SGD step

$$\lim_{T \to 0} \mathcal{L}_{\text{DESOM}}(\mathbf{W}_{\mathbf{e}}, \mathbf{W}_{\mathbf{d}}, \{\mathbf{m}_{k}\}_{1}^{K}, \{b_{i}\}_{1}^{N}) = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{\tilde{x}}_{i} - \mathbf{x}_{i}||_{2}^{2} + \gamma \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{z}_{i} - \mathbf{m}_{b_{i}}||_{2}^{2}$$
$$= \mathcal{L}_{\text{R}}(\mathbf{W}_{\mathbf{e}}, \mathbf{W}_{\mathbf{d}}) + \gamma \mathcal{L}_{\text{K-means}}(\mathbf{W}_{\mathbf{e}}, \{\mathbf{m}_{k}\}_{1}^{K}, \{b_{i}\}_{1}^{N})$$

At the end of training, DESOM converges to the Deep Clustering Network (DCN) [Yang et al., 2017].

• **MNIST**: grayscale images of handwritten digits (28-by-28 pixels). $N_{\text{train}} = 60000/N_{\text{test}} = 10000, P = 784, K^* = 10$

- ► **MNIST**: grayscale images of handwritten digits (28-by-28 pixels). $N_{\text{train}} = 60000/N_{\text{test}} = 10000, P = 784, K^{\star} = 10$
- ► Fashion-MNIST: grayscale images of clothing (28-by-28 pixels). $N_{\text{train}} = 60000/N_{\text{test}} = 10000, P = 784, K^* = 10$

- ▶ MNIST: grayscale images of handwritten digits (28-by-28 pixels). $N_{\text{train}} = 60000/N_{\text{test}} = 10000, P = 784, K^{\star} = 10$
- ▶ **Fashion-MNIST**: grayscale images of clothing (28-by-28 pixels). $N_{\text{train}} = 60000/N_{\text{test}} = 10000, P = 784, K^* = 10$
- ▶ **USPS**: grayscale images of handwritten digits (16-by-16 pixels). $N_{\text{train}} = 7291/N_{\text{test}} = 2007, P = 256, K^* = 10$

- ► MNIST: grayscale images of handwritten digits (28-by-28 pixels). $N_{\text{train}} = 60000/N_{\text{test}} = 10000, P = 784, K^{\star} = 10$
- ▶ Fashion-MNIST: grayscale images of clothing (28-by-28 pixels). $N_{\text{train}} = 60000/N_{\text{test}} = 10000, P = 784, K^* = 10$
- ► **USPS**: grayscale images of handwritten digits (16-by-16 pixels). $N_{\text{train}} = 7291/N_{\text{test}} = 2007, P = 256, K^* = 10$
- ▶ **Reuters-10k**: text data set built from the RCV1-v2 corpus (English news stories), classified in 4 categories, using 2000 TF-IDF features. $N_{\text{train}} = 7769/N_{\text{test}} = 2231, P = 2000, K^* = 4$

Figure 1: DESOM maps with decoded prototypes for MNIST and Fashion-MNIST data sets.

Florent Forest – PhD defense Unsupervised Learning of Data Representations and Cluster Structures: Applications to Large-scale Health Monitoring of Turbofan Aircraft Engines 16/38

Table 1: Purity and NMI. Best result underlined and results with no significant difference in bold.

	MN	list	Fashior	n-MNIST	US	SPS .	Reute	rs-10k
Method	Pur	NMI	Pur	NMI	Pur	NMI	Pur	NMI
<i>K</i> -means (<i>K</i> = 64)	0.845	0.581	0.718	0.514	0.858	0.598	0.895	0.439
AE+K-means ($K = 64$)	0.946	0.672	0.764	0.548	0.874	0.611	0.856	0.392
SOM (8 \times 8)	0.832	0.576	0.712	0.513	0.848	0.595	0.554	0.225
AE+SOM (8 \times 8)	0.935	0.666	0.758	0.542	0.849	0.611	0.782	0.323
DESOM-AE+SOM (8 $ imes$ 8)	0.933	0.655	0.756	<u>0.543</u>	0.852	0.589	0.799	0.355
DESOM (8 $ imes$ 8)	0.934	0.658	0.751	0.541	<u>0.857</u>	0.592	0.808	<u>0.364</u>
SOM-VAE [Fortuin et al., 2019] (8 $ imes$ 8)	0.868	0.595	0.739	0.520	-	-	-	-
DPSOM [Manduchi et al., 2020] (8 $ imes$ 8)	0.964	0.705	0.764	0.571		-	-	-

Method	MNIST	Fashion-MNIST	USPS	Reuters-10k
K-means (K = #classes)	0.533	0.549	0.660	0.589
AE+K-means (K = #classes)	0.801	0.489	0.680	0.538
SOM (8 \times 8) + HC	0.598	0.491	0.666	0.439
AE+SOM (8 \times 8) + HC	0.791	0.480	0.649	0.441
DESOM-AE+SOM (8 \times 8) + HC	0.721	0.553	0.610	0.467
DESOM (8 \times 8) + HC	0.810	0.571	0.698	0.486

Table 1: Purity and NMI. Best result underlined and results with no significant difference in bold.

	MN	list	Fashior	n-MNIST	US	SPS .	Reute	rs-10k
Method	Pur	NMI	Pur	NMI	Pur	NMI	Pur	NMI
<i>K</i> -means (<i>K</i> = 64)	0.845	0.581	0.718	0.514	0.858	0.598	0.895	0.439
AE+K-means ($K = 64$)	0.946	0.672	0.764	0.548	0.874	0.611	0.856	0.392
SOM (8 \times 8)	0.832	0.576	0.712	0.513	0.848	0.595	0.554	0.225
AE+SOM (8 \times 8)	<u>0.935</u>	0.666	<u>0.758</u>	0.542	0.849	<u>0.611</u>	0.782	0.323
DESOM-AE+SOM (8 $ imes$ 8)	0.933	0.655	0.756	<u>0.543</u>	0.852	0.589	0.799	0.355
DESOM (8 $ imes$ 8)	0.934	0.658	0.751	0.541	<u>0.857</u>	0.592	<u>0.808</u>	<u>0.364</u>
SOM-VAE [Fortuin et al., 2019] (8 $ imes$ 8)	0.868	0.595	0.739	0.520	-	-	-	-
DPSOM [Manduchi et al., 2020] (8 $ imes$ 8)	0.964	0.705	0.764	0.571	-	-	-	-

Method	MNIST	Fashion-MNIST	USPS	Reuters-10k
K-means (K = #classes)	0.533	0.549	0.660	0.589
AE+K-means (K = #classes)	0.801	0.489	0.680	0.538
SOM (8 \times 8) + HC	0.598	0.491	0.666	0.439
AE+SOM (8 \times 8) + HC	0.791	0.480	0.649	0.441
DESOM-AE+SOM (8 \times 8) + HC	0.721	0.553	0.610	0.467
DESOM (8 \times 8) + HC	0.810	0.571	0.698	0.486

Table 1: Purity and NMI. Best result underlined and results with no significant difference in bold.

	MN	list	Fashior	n-MNIST	US	SPS .	Reute	rs-10k
Method	Pur	NMI	Pur	NMI	Pur	NMI	Pur	NMI
<i>K</i> -means (<i>K</i> = 64)	0.845	0.581	0.718	0.514	0.858	0.598	0.895	0.439
AE+K-means ($K = 64$)	0.946	0.672	0.764	0.548	0.874	0.611	0.856	0.392
SOM (8 × 8)	0.832	0.576	0.712	0.513	0.848	0.595	0.554	0.225
AE+SOM (8 \times 8)	<u>0.935</u>	<u>0.666</u>	<u>0.758</u>	0.542	0.849	<u>0.611</u>	0.782	0.323
DESOM-AE+SOM (8 $ imes$ 8)	0.933	0.655	0.756	<u>0.543</u>	0.852	0.589	0.799	0.355
DESOM (8 $ imes$ 8)	0.934	0.658	0.751	0.541	<u>0.857</u>	0.592	<u>0.808</u>	<u>0.364</u>
SOM-VAE [Fortuin et al., 2019] (8 $ imes$ 8)	0.868	0.595	0.739	0.520	-	-	-	
DPSOM [Manduchi et al., 2020] (8 $ imes$ 8)	0.964	0.705	0.764	0.571	-	-	-	

Method	MNIST	Fashion-MNIST	USPS	Reuters-10k
K-means (K = #classes)	0.533	0.549	0.660	0.589
AE+K-means (K = #classes)	0.801	0.489	0.680	0.538
SOM (8 \times 8) + HC	0.598	0.491	0.666	0.439
AE+SOM (8 \times 8) + HC	0.791	0.480	0.649	0.441
DESOM-AE+SOM (8 \times 8) + HC	0.721	0.553	0.610	0.467
DESOM (8 \times 8) + HC	0.810	0.571	0.698	0.486

Table 1: Purity and NMI. Best result underlined and results with no significant difference in bold.

	MN	list	Fashior	n-MNIST	US	SPS .	Reute	rs-10k
Method	Pur	NMI	Pur	NMI	Pur	NMI	Pur	NMI
K-means ($K = 64$)	0.845	0.581	0.718	0.514	0.858	0.598	0.895	0.439
AE+K-means ($K = 64$)	0.946	0.672	0.764	0.548	0.874	0.611	0.856	0.392
SOM (8 $ imes$ 8)	0.832	0.576	0.712	0.513	0.848	0.595	0.554	0.225
AE+SOM (8 \times 8)	0.935	0.666	0.758	0.542	0.849	<u>0.611</u>	0.782	0.323
DESOM-AE+SOM (8 $ imes$ 8)	0.933	0.655	0.756	<u>0.543</u>	0.852	0.589	0.799	0.355
DESOM (8 $ imes$ 8)	0.934	0.658	0.751	0.541	<u>0.857</u>	0.592	<u>0.808</u>	<u>0.364</u>
SOM-VAE [Fortuin et al., 2019] (8 $ imes$ 8)	0.868	0.595	0.739	0.520	-	-	-	-
DPSOM [Manduchi et al., 2020] (8 $ imes$ 8)	0.964	0.705	0.764	0.571	-	-	-	-

Method	MNIST	Fashion-MNIST	USPS	Reuters-10k
K-means (K = #classes)	0.533	0.549	0.660	0.589
AE+K-means (K = #classes)	0.801	0.489	0.680	0.538
SOM (8 \times 8) + HC	0.598	0.491	0.666	0.439
AE+SOM (8 \times 8) + HC	0.791	0.480	0.649	0.441
DESOM-AE+SOM (8 \times 8) + HC	0.721	0.553	0.610	0.467
DESOM (8 \times 8) + HC	0.810	0.571	0.698	0.486

Table 1: Purity and NMI. Best result underlined and results with no significant difference in bold.

	MN	IIST	Fashior	n-MNIST	US	SPS .	Reute	rs-10k
Method	Pur	NMI	Pur	NMI	Pur	NMI	Pur	NMI
<i>K</i> -means (<i>K</i> = 64)	0.845	0.581	0.718	0.514	0.858	0.598	0.895	0.439
AE+K-means ($K = 64$)	0.946	0.672	0.764	0.548	0.874	0.611	0.856	0.392
SOM (8 \times 8)	0.832	0.576	0.712	0.513	0.848	0.595	0.554	0.225
AE+SOM (8 \times 8)	0.935	0.666	0.758	0.542	0.849	0.611	0.782	0.323
DESOM-AE+SOM (8 $ imes$ 8)	0.933	0.655	0.756	<u>0.543</u>	0.852	0.589	0.799	0.355
DESOM (8 $ imes$ 8)	0.934	0.658	0.751	0.541	<u>0.857</u>	0.592	0.808	<u>0.364</u>
SOM-VAE [Fortuin et al., 2019] (8 $ imes$ 8)	0.868	0.595	0.739	0.520	-	-	-	-
DPSOM [Manduchi et al., 2020] (8 $ imes$ 8)	0.964	0.705	0.764	0.571	-	-	-	-

Method	MNIST	Fashion-MNIST	USPS	Reuters-10k
K-means (K = #classes) AE+K-means (K = #classes)	0.533 0.801	0.549 0.489	0.660 0.680	0.589 0.538
SOM (8 \times 8) + HC AE+SOM (8 \times 8) + HC	0.598 0.791	0.491 0.480	0.666 0.649	0.439 0.441
DESOM-AE+SOM (8 $ imes$ 8) + HC	0.721	0.553	0.610	0.467
DESOM (8 $ imes$ 8) + HC	<u>0.810</u>	<u>0.571</u>	<u>0.698</u>	<u>0.486</u>

Stability analysis for model selection in clustering

Clustering validation

Evaluating results of cluster analysis in a *quantitative* and *objective* fashion [Roth et al., 2002], in order to **select the** *right* **number of clusters** *K* in a data set, or to tune any parameter of a clustering algorithm.

The objective of clustering is ill-defined [Kleinberg, 2003, von Luxburg et al., 2012, Shalev-Shwartz and Ben-David, 2013]

 \rightarrow Challenging problem!

Clustering validation

Evaluating results of cluster analysis in a *quantitative* and *objective* fashion [Roth et al., 2002], in order to **select the** *right* **number of clusters** *K* in a data set, or to tune any parameter of a clustering algorithm.

The objective of clustering is ill-defined [Kleinberg, 2003, von Luxburg et al., 2012, Shalev-Shwartz and Ben-David, 2013]

\rightarrow Challenging problem!

- ► Ground-truth labels: External indices (e.g. ARI, NMI...)
- ▶ No labels: Internal indices (see [Arbelaitz et al., 2013, Desgraupes, 2013])
 - 1. Within/between-cluster distance ratios (compactness VS separateness) e.g. Calinski-Harabasz, Davies-Bouldin, Dunn, Silhouette...
 - \rightarrow Explicit geometrical prior, algorithm-specific
 - 2. Model-based likelihood criteria (AIC, BIC, ICL [Biernacki et al., 2000])
 - 3. Statistical robustness: cluster stability analysis

Stability principle

A good clustering is a **stable structure** in the data (\neq algorithmic or sampling artifact). A clustering algorithm A applied repeatedly (with the same parameter K) to perturbed versions of a data set should **find the same structure** and obtain similar results.

$$\operatorname{Stab}(\mathcal{A}, \mathcal{K}) := \mathbb{E}_{\mathbf{X}, \mathbf{X}' \sim \mathcal{P}^N} \left[\mathbf{s}(\mathcal{C}_{\mathcal{K}}, \mathcal{C}'_{\mathcal{K}}) \right]$$

where *s* is a similarity measure between partitions.

Stability principle

A good clustering is a **stable structure** in the data (\neq algorithmic or sampling artifact). A clustering algorithm A applied repeatedly (with the same parameter K) to perturbed versions of a data set should **find the same structure** and obtain similar results.

$$\operatorname{Stab}(\mathcal{A}, \mathcal{K}) := \mathbb{E}_{\mathbf{X}, \mathbf{X}' \sim \mathcal{P}^N} \left[\mathbf{s}(\mathcal{C}_{\mathcal{K}}, \mathcal{C}'_{\mathcal{K}}) \right]$$

where s is a similarity measure between partitions.

How to estimate stability in practice?

- 1. Generate several samples from the data set (sampling, noise).
- 2. Apply the clustering algorithm on each sample.
- 3. Measure similarities between the obtained partitions.
- 4. Aggregate these similarities into a stability score.
- 5. Select the best solution using a decision rule.

Numerous approaches and theoretical works. See [Von Luxburg, 2009] for a review.

Jumping VS jittering

Sources of instability

Jumping: algorithm ends up in local minima, yielding very different solutions.

Jumping VS jittering

Sources of instability

Jumping: algorithm ends up in local minima, yielding very different solutions.

Jumping VS jittering

Sources of instability

Jumping: algorithm ends up in local minima, yielding very different solutions.

Jumping VS jittering

Sources of instability

- > Jumping: algorithm ends up in local minima, yielding very different solutions.
- > Jittering: cluster boundaries *jitter* in high-density regions, causing points to change clusters.

Stadion: a criterion based on a stability trade-off [Mourer et al., 2020]

Our setting

- ► No perfect symmetries in the distribution
- Effective initialization strategy (e.g. best of *n* runs)
- $N \gg K$

In this setting,

- 1. Jittering is the main source of instability.
- 2. Sampling perturbation is ineffective.
- 3. Stability is unable to detect $K < K^{\star}$.

based on [Ben-David et al., 2006, Ben-David and Von Luxburg, 2008, Von Luxburg, 2009]

Stadion: a criterion based on a stability trade-off [Mourer et al., 2020]

Our setting

- No perfect symmetries in the distribution
- Effective initialization strategy (e.g. best of *n* runs)
- $N \gg K$

In this setting,

- 1. Jittering is the main source of instability.
- 2. Sampling perturbation is ineffective.
- 3. Stability is unable to detect $K < K^{\star}$.

based on [Ben-David et al., 2006, Ben-David and Von Luxburg, 2008, Von Luxburg, 2009]

Proposition

A clustering is a partitioning of data into groups so that the partition is stable, and within each cluster, there exists no stable partition.

Stadion: a criterion based on a stability trade-off [Mourer et al., 2020]

Our setting

- ► No perfect symmetries in the distribution
- Effective initialization strategy (e.g. best of *n* runs)
- ► N ≫ K

In this setting,

- 1. Jittering is the main source of instability.
- 2. Sampling perturbation is ineffective.
- 3. Stability is unable to detect $K < K^{\star}$.

based on [Ben-David et al., 2006, Ben-David and Von Luxburg, 2008, Von Luxburg, 2009]

Proposition

A clustering is a partitioning of data into groups so that the partition is stable, and within each cluster, there exists no stable partition.

$$\mathsf{Stadion}(\mathcal{A}, \mathcal{K}, \mathcal{C}_{\mathcal{K}}, \mathbf{\Omega}) := \mathsf{Stab}_{\mathsf{B}}(\mathcal{A}, \mathcal{K}, \mathcal{C}_{\mathcal{K}}) - \mathsf{Stab}_{\mathsf{W}}(\mathcal{A}, \mathcal{K}, \mathcal{C}_{\mathcal{K}}, \mathbf{\Omega}) \in [-1, 1]$$

Stability difference criterion

Between-cluster stability

Within-cluster stability

- Only additive noise perturbation is reliable (uniform or Gaussian)
- Empirical methodology to estimate $Stab_W$ and vary the level of noise $\varepsilon \rightarrow$ "stability paths"
- Extensive discussion and hyperparameter studies in [Mourer et al., 2020]

Florent Forest - PhD defense

Unsupervised Learning of Data Representations and Cluster Structures: Applications to Large-scale Health Monitoring of Turbofan Aircraft Engines 22

Usage example: stability paths

Figure 2: Between-cluster and within-cluster stability and Stadion paths for *K*-means, $K \in \{1...6\}$.

Florent Forest — PhD defense

Most indices are undefined for K = 1.

Figure 3: Golfball data set and Stadion paths for *K*-means, $K \in \{1...6\}$.

	Artificial data sets						Real data sets						
	K-me	neans Ward GMM		K-me	K-means Ward			GMM					
Method	RARI	wins	RARI	wins	RARI	wins	RARI	wins	RARI	wins	RARI	wins	
к*	6.47	73	4.77	73	5.05	73	4.50	7	3.36	7	3.93	7	
Stadion-max	6.02	50	5.25	54			4.93	5	5.86	4		-	
Stadion-mean	6.12	51	5.80	49			6.57	4	7.64	3		-	
Stadion-max (extended)	6.13	56	-		5.59	56	6.29	3	-	-	4.43	5	
Stadion-mean (extended)	6.42	48			6.79	43	6.29	3	-	-	5.50	3	
BIC	-	-		1.1	6.45	48	-	-	-	-	7.29	2	
Wemmert-Gançarski	6.62	53	5.40	54	5.77	52	6.00	5	5.36	4	5.79	4	
Silhouette	7.51	46	6.47	45	7.01	45	7.21	4	5.86	4	6.50	4	
[Lange et al., 2004]	7.93	45	6.53	51	6.99	48	8.64	3	5.86	4	7.14	3	
Davies-Bouldin	8.11	40	6.45	41	7.29	34	8.29	4	7.29	3	8.57	3	
Ray-Turi	8.19	37	6.97	40	7.68	33	8.29	4	6.29	3	7.36	4	
Calinski-Harabasz	8.71	41	7.14	39	7.43	37	12.21	1	8.86	1	5.79	3	
Dunn	10.11	26	7.77	33	7.92	34	10.57	1	7.79	2	9.07	2	
Xie-Beni	10.27	22	7.61	34	8.19	28	11.50	1	7.57	2	9.93	2	
Gap statistic	10.38	26					10.57	2	-	-		-	
[Ben-Hur et al., 2002]	10.99	20	7.86	31	8.85	28	8.14	1	7.93	2	9.71	2	

	Artificial data sets							Real data sets						
	K-means		Ward		GMM		K-means		Ward		GMM			
Method	RARI	wins	RARI	wins	RARI	wins	RARI	wins	RARI	wins	RARI	wins		
κ*	6.47	73	4.77	73	5.05	73	4.50	7	3.36	7	3.93	7		
Stadion-max	6.02	50	5.25	54			4.93	5	5.86	4				
Stadion-mean	6.12	51	5.80	49			6.57	4	7.64	3				
Stadion-max (extended)	6.13	56			5.59	56	6.29	3			4.43	5		
Stadion-mean (extended)	6.42	48			6.79	43	6.29	3			5.50	3		
BIC		-			6.45	48	-	-			7.29	2		
Wemmert-Gançarski	6.62	53	5.40	54	5.77	52	6.00	5	5.36	4	5.79	4		
Silhouette	7.51	46	6.47	45	7.01	45	7.21	4	5.86	4	6.50	4		
[Lange et al., 2004]	7.93	45	6.53	51	6.99	48	8.64	3	5.86	4	7.14	3		
Davies-Bouldin	8.11	40	6.45	41	7.29	34	8.29	4	7.29	3	8.57	3		
Ray-Turi	8.19	37	6.97	40	7.68	33	8.29	4	6.29	3	7.36	4		
Calinski-Harabasz	8.71	41	7.14	39	7.43	37	12.21	1	8.86	1	5.79	3		
Dunn	10.11	26	7.77	33	7.92	34	10.57	1	7.79	2	9.07	2		
Xie-Beni	10.27	22	7.61	34	8.19	28	11.50	1	7.57	2	9.93	2		
Gap statistic	10.38	26	-	-	-	-	10.57	2	-	-	-	-		
[Ben-Hur et al., 2002]	10.99	20	7.86	31	8.85	28	8.14	1	7.93	2	9.71	2		

	Artificial data sets						Real data sets						
	K-me	ans	Wa	rd	I GMM K-		K-me	ans	ans Ward			MM	
Method	RARI	wins	RARI	wins	RARI	wins	RARI	wins	RARI	wins	RARI	wins	
к*	6.47	73	4.77	73	5.05	73	4.50	7	3.36	7	3.93	7	
Stadion-max	6.02	50	5.25	54	1.0	1.0	4.93	5	5.86	4	1.1	-	
Stadion-mean	6.12	51	5.80	49	1.1	1.1	6.57	4	7.64	3	1.1		
Stadion-max (extended)	6.13	56			5.59	56	6.29	3	-	-	4.43	5	
Stadion-mean (extended)	6.42	48			6.79	43	6.29	3	-	-	5.50	3	
BIC				1.1	6.45	48	-		-	-	7.29	2	
Wemmert-Gançarski	6.62	53	5.40	54	5.77	52	6.00	5	5.36	4	5.79	4	
Silhouette	7.51	46	6.47	45	7.01	45	7.21	4	5.86	4	6.50	4	
[Lange et al., 2004]	7.93	45	6.53	51	6.99	48	8.64	3	5.86	4	7.14	3	
Davies-Bouldin	8.11	40	6.45	41	7.29	34	8.29	4	7.29	3	8.57	3	
Ray-Turi	8.19	37	6.97	40	7.68	33	8.29	4	6.29	3	7.36	4	
Calinski-Harabasz	8.71	41	7.14	39	7.43	37	12.21	1	8.86	1	5.79	3	
Dunn	10.11	26	7.77	33	7.92	34	10.57	1	7.79	2	9.07	2	
Xie-Beni	10.27	22	7.61	34	8.19	28	11.50	1	7.57	2	9.93	2	
Gap statistic	10.38	26					10.57	2	-	-		-	
[Ben-Hur et al., 2002]	10.99	20	7.86	31	8.85	28	8.14	1	7.93	2	9.71	2	

	Artificial data sets						Real data sets						
	K-m	eans	Wa	Ward		GMM		eans	Ward		GMM		
Method	RARI	wins	RARI	wins	RARI	wins	RARI	wins	RARI	wins	RARI	wins	
к*	6.47	73	4.77	73	5.05	73	4.50	7	3.36	7	3.93	7	
Stadion-max	6.02	50	5.25	54		-	4.93	5	5.86	4	-	-	
Stadion-mean	6.12	51	5.80	49		-	6.57	4	7.64	3	-	-	
Stadion-max (extended)	6.13	56			5.59	56	6.29	3			4.43	5	
Stadion-mean (extended)	6.42	48	1.1	1.1	6.79	43	6.29	3	1.1	1.1	5.50	3	
BIC		-			6.45	48	-	-			7.29	2	
Wemmert-Gançarski	6.62	53	5.40	54	5.77	52	6.00	5	5.36	4	5.79	4	
Silhouette	7.51	46	6.47	45	7.01	45	7.21	4	5.86	4	6.50	4	
[Lange et al., 2004]	7.93	45	6.53	51	6.99	48	8.64	3	5.86	4	7.14	3	
Davies-Bouldin	8.11	40	6.45	41	7.29	34	8.29	4	7.29	3	8.57	3	
Ray-Turi	8.19	37	6.97	40	7.68	33	8.29	4	6.29	3	7.36	4	
Calinski-Harabasz	8.71	41	7.14	39	7.43	37	12.21	1	8.86	1	5.79	3	
Dunn	10.11	26	7.77	33	7.92	34	10.57	1	7.79	2	9.07	2	
Xie-Beni	10.27	22	7.61	34	8.19	28	11.50	1	7.57	2	9.93	2	
Gap statistic	10.38	26	-	-	-	-	10.57	2	-	-	-	-	
[Ben-Hur et al., 2002]	10.99	20	7.86	31	8.85	28	8.14	1	7.93	2	9.71	2	

	Artificial data sets							Real data sets						
	K-means		Ward		GMM		K-means		Ward		GMM			
Method	RARI	wins	RARI	wins	RARI	wins	RARI	wins	RARI	wins	RARI	wins		
к*	6.47	73	4.77	73	5.05	73	4.50	7	3.36	7	3.93	7		
Stadion-max	6.02	50	5.25	54		-	4.93	5	5.86	4		-		
Stadion-mean	6.12	51	5.80	49			6.57	4	7.64	3				
Stadion-max (extended)	6.13	56			5.59	56	6.29	3	1.1		4.43	5		
Stadion-mean (extended)	6.42	48			6.79	43	6.29	3	1.1		5.50	3		
BIC			1.1	1.1	6.45	48			1.1	1.1	7.29	2		
Wemmert-Gançarski	6.62	53	5.40	54	5.77	52	6.00	5	5.36	4	5.79	4		
Silhouette	7.51	46	6.47	45	7.01	45	7.21	4	5.86	4	6.50	4		
[Lange et al., 2004]	7.93	45	6.53	51	6.99	48	8.64	3	5.86	4	7.14	3		
Davies-Bouldin	8.11	40	6.45	41	7.29	34	8.29	4	7.29	3	8.57	3		
Ray-Turi	8.19	37	6.97	40	7.68	33	8.29	4	6.29	3	7.36	4		
Calinski-Harabasz	8.71	41	7.14	39	7.43	37	12.21	1	8.86	1	5.79	3		
Dunn	10.11	26	7.77	33	7.92	34	10.57	1	7.79	2	9.07	2		
Xie-Beni	10.27	22	7.61	34	8.19	28	11.50	1	7.57	2	9.93	2		
Gap statistic	10.38	26	-	-	-	-	10.57	2		-	-	-		
[Ben-Hur et al., 2002]	10.99	20	7.86	31	8.85	28	8.14	1	7.93	2	9.71	2		

	Artificial data sets						Real data sets						
	K-me	K-means Ward GMM		K-means Ward				GMM					
Method	RARI	wins	RARI	wins	RARI	wins	RARI	wins	RARI	wins	RARI	wins	
к*	6.47	73	4.77	73	5.05	73	4.50	7	3.36	7	3.93	7	
Stadion-max	6.02	50	5.25	54	-	-	4.93	5	5.86	4	-	-	
Stadion-mean	6.12	51	5.80	49	-	-	6.57	4	7.64	3	-	-	
Stadion-max (extended)	6.13	56	1.1	1.1	5.59	56	6.29	3	-	-	4.43	5	
Stadion-mean (extended)	6.42	48	-		6.79	43	6.29	3	-	-	5.50	3	
BIC		-		1.1	6.45	48	-	-	-	-	7.29	2	
Wemmert-Gançarski	6.62	53	5.40	54	5.77	52	6.00	5	5.36	4	5.79	4	
Silhouette	7.51	46	6.47	45	7.01	45	7.21	4	5.86	4	6.50	4	
[Lange et al., 2004]	7.93	45	6.53	51	6.99	48	8.64	3	5.86	4	7.14	3	
Davies-Bouldin	8.11	40	6.45	41	7.29	34	8.29	4	7.29	3	8.57	3	
Ray-Turi	8.19	37	6.97	40	7.68	33	8.29	4	6.29	3	7.36	4	
Calinski-Harabasz	8.71	41	7.14	39	7.43	37	12.21	1	8.86	1	5.79	3	
Dunn	10.11	26	7.77	33	7.92	34	10.57	1	7.79	2	9.07	2	
Xie-Beni	10.27	22	7.61	34	8.19	28	11.50	1	7.57	2	9.93	2	
Gap statistic	10.38	26	-		-	-	10.57	2	-	-	-	-	
[Ben-Hur et al., 2002]	10.99	20	7.86	31	8.85	28	8.14	1	7.93	2	9.71	2	

1. How to learn representations to effectively cluster complex data?

Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2019). Deep Embedded SOM: Joint Representation Learning and Self-Organization. In ESANN 2019.

Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2019). Deep Architectures for Joint Clustering and Visualization with Self-Organizing Maps. In Workshop LDRC, PAKDD 2019.

Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2020). Carte SOM profonde : Apprentissage joint de représentations et auto-organisation. In CAp: Conférence d'Apprentissage 2020.

Journal submission (under review).

2. How to evaluate clustering algorithms?

Mourer, A., Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2020). Selecting the Number of Clusters K with a Stability Trade-off: an Internal Validation Criterion. arXiv:2006.08530 (under review).

Forest, F., Mourer, A., Lebbah, M., Azzag, H., & Lacaille, J. (2021). An Invariance-guided Stability Criterion for Time Series Clustering Validation. In ICPR 2020. Scalable aircraft engine health monitoring applications

Volume, Velocity:

- Growth of air traffic
- Aircraft equipped with more sensors, high-frequency temporal data

Variety:

- Multiple data sources: production, tests, flights, maintenance, weather...
- ► Time series, geospatial, images (2D/3D), text...

Value:

► Fly-by-the-hour leasing contracts → engine manufacturers responsible for maintenance

...and now

1. Send application to the data, avoid data transfer (locality)

- 1. Send application to the data, avoid data transfer (locality)
- 2. Distributed, data-parallel processing (Map-Reduce, functional programming)

- 1. Send application to the data, avoid data transfer (locality)
- Distributed, data-parallel processing (Map-Reduce, functional programming)
 2.1 Map

- 1. Send application to the data, avoid data transfer (locality)
- Distributed, data-parallel processing (Map-Reduce, functional programming)
 2.1 Map
 2.2 Shuffle

- 1. Send application to the data, avoid data transfer (locality)
- 2. Distributed, data-parallel processing (Map-Reduce, functional programming)
 - 2.1 Map
 - 2.2 Shuffle
 - 2.3 Reduce

- 1. Send application to the data, avoid data transfer (locality)
- 2. Distributed, data-parallel processing (Map-Reduce, functional programming)
 - 2.1 Map
 - 2.2 Shuffle
 - 2.3 Reduce
- 3. Obtain results

- 1. Send application to the data, avoid data transfer (locality)
- 2. Distributed, data-parallel processing (Map-Reduce, functional programming)
 - 2.1 Map
 - 2.2 Shuffle
 - 2.3 Reduce
- 3. Obtain results

...and now

- 1. Send application to the data, avoid data transfer (locality)
- 2. Distributed, data-parallel processing (Map-Reduce, functional programming)
 - 2.1 Map
 - 2.2 Shuffle
 - 2.3 Reduce
- 3. Obtain results

▶ ML algorithms can often be expressed in this paradigm [Aggarwal and Reddy, 2013, Sarazin et al., 2014]

A generic and scalable analytics pipeline [Forest et al., 2018]

Objectives

- Provide generic tools enabling engineers to deploy domain-specific algorithms at scale across millions of flights stored on a cluster
- ► Scale health monitoring methodologies to produce value by leveraging Big Aircraft Data

A generic and scalable analytics pipeline [Forest et al., 2018]

Objectives

- Provide generic tools enabling engineers to deploy domain-specific algorithms at scale across millions of flights stored on a cluster
- ► Scale health monitoring methodologies to produce value by leveraging Big Aircraft Data

A generic and scalable analytics pipeline [Forest et al., 2018]

Objectives

- Provide generic tools enabling engineers to deploy domain-specific algorithms at scale across millions of flights stored on a cluster
- ► Scale health monitoring methodologies to produce value by leveraging Big Aircraft Data

Implemented methodology: Fleet monitoring with Self-Organizing Maps

Monitoring fleets of engines using SOM based on indicators describing the *state* of an engine (or its subsystems) at each flight, following [Cottrell et al., 2009, Côme et al., 2010a, Côme et al., 2011].

Vibration monitoring use case [Forest et al., 2020a]

Vibration monitoring

- Crucial part of condition monitoring for rotating equipment [Randall, 2011, Bastard et al., 2016]
- Detection of unbalance, misalignment due to wear (blades, bearings, gears), rotor/stator contact, etc.

Vibration monitoring use case [Forest et al., 2020a]

Vibration monitoring

- Crucial part of condition monitoring for rotating equipment [Randall, 2011, Bastard et al., 2016]
- Detection of unbalance, misalignment due to wear (blades, bearings, gears), rotor/stator contact, etc.

Proposition

Methodology for large-scale vibration monitoring of a fleet of aircraft engines using historical flight recorder data.

- 1. Massive extraction of time-domain vibration signatures using distributed processing.
- 2. Unsupervised learning with **self-organizing maps** for clustering and visualization.
 - \checkmark Monitoring, alerting, forecasting $\,$ $\,$ Diagnosis and prognosis are left to experts

Vibration sensors

Sensors measure **rotation speeds** and **vibration peak amplitude** (displacement, speed or acceleration). Raw signals are filtered and downsampled by the onboard calculator.

Variables

- ▶ N1: LP shaft rotation speed @66Hz
- ▶ N2: HP shaft rotation speed @66Hz
- ▶ LP-ACC1, LP-ACC2: vibration amplitude at N1 speed @4Hz
- ► HP-ACC1, HP-ACC2: vibration amplitude at N2 speed @4Hz

Vibration sensors

Sensors measure **rotation speeds** and **vibration peak amplitude** (displacement, speed or acceleration). Raw signals are filtered and downsampled by the onboard calculator.

Variables

- ▶ N1: LP shaft rotation speed @66Hz
- ▶ N2: HP shaft rotation speed @66Hz
- ▶ LP-ACC1, LP-ACC2: vibration amplitude at N1 speed @4Hz
- ► HP-ACC1, HP-ACC2: vibration amplitude at N2 speed @4Hz

~400 engines, ~100k flights, ~1 TB of data

Vibratory response of the engine: vibration amplitude as a function of regime.

Vibratory response of the engine: vibration amplitude as a function of regime.

Vibratory response of the engine: vibration amplitude as a function of regime.

Modes at specific regimes \rightarrow unbalance at specific locations of the engine

- Soork -distributed implementation of batch SOM
- SOM units associated to prototype vibration signatures, representing vibration profiles
- ► Self-organization → smooth variations of factors of variations, **interpretability**
- Flight are clustered by projecting on the nearest vibration profile (Best-Matching Signature)

Figure 4: Signature map (HP-ACC2 vs N2).

Vibration signatures describe intrinsic properties of an engine.

► Every engine is different!

Figure 5: Heatmaps of projection counts for 3 different engines.

Feature extraction

Flight

Flight

ML Algorithms

Visualization applications

- Classification into higher-level vibration profiles by clustering the prototypes
- Expert labelling of map regions (e.g. well-balanced engines, unbalanced ones, switched off sensors, etc.)

Feature extraction

Vibration profiles SOM — Methodology

- Classification into higher-level vibration profiles by clustering the prototypes
- Expert labelling of map regions (e.g. well-balanced engines, unbalanced ones, switched off sensors, etc.)
- \blacktriangleright Distance to map \rightarrow Anomaly score
- Analysis of the evolution of an engine flight after flight: engine trajectory (see [Côme et al., 2011])
 - Sudden jumps or progressive trends may detect abnormal wear
 - Find similar engines, forecast future trajectories (post-finding)

Feature extraction

Vibration profiles SOM — Methodology

- Classification into higher-level vibration profiles by clustering the prototypes
- Expert labelling of map regions (e.g. well-balanced engines, unbalanced ones, switched off sensors, etc.)
- ► Distance to map → Anomaly score
- Analysis of the evolution of an engine flight after flight: engine trajectory (see [Côme et al., 2011])
 - Sudden jumps or progressive trends may detect abnormal wear
 - ► Find similar engines, forecast future trajectories (post-finding)
- Periodically re-train with up-to-date flight data, to account for new trends and aging of the fleet.

Conclusion and perspectives

- 1. How to learn representations to effectively cluster complex data?
- 2. How to evaluate clustering algorithms?
- 3. How to develop scalable engine health monitoring methodologies?

Forest, F., Lacaille, J., Lebbah, M., & Azzag, H. (2018). A Generic and Scalable Pipeline for Large-Scale Analytics of Continuous Aircraft Engine Data. In IEEE International Conference on Big Data 2018.

Forest, F., Cochard, Q., Noyer, C., Cabut, A., Joncour, M., Lacaille, J., Lebbah, M. & Azzag, H. (2020). Large-scale Vibration Monitoring of Aircraft Engines from Operational Data using Self-organized Models. In *Annual Conference of the PHM* Society 2020.

Lacaille, J. & Forest, F. (2020). Computer environment system for monitoring aircraft engines. Patent FR3089501.

Deep Embedded SOM:

- ► Explore different AE architectures and more complex data sets
- Study interactions of neighborhood decay with learning
- Automatic hyperparameter tuning

Deep Embedded SOM:

- Explore different AE architectures and more complex data sets
- Study interactions of neighborhood decay with learning
- Automatic hyperparameter tuning

Model selection & stability analysis:

- Speed up computation of Stadion (distance to boundaries)
- Extend estimation of within-cluster stability to all clustering algorithms
- > Develop theoretical results, links with existing indices and adversarial attacks
- Confidence in the quality of unsupervised algorithms results

Deep Embedded SOM:

- Explore different AE architectures and more complex data sets
- Study interactions of neighborhood decay with learning
- Automatic hyperparameter tuning

Model selection & stability analysis:

- Speed up computation of Stadion (distance to boundaries)
- Extend estimation of within-cluster stability to all clustering algorithms
- Develop theoretical results, links with existing indices and adversarial attacks
- Confidence in the quality of unsupervised algorithms results

Industrial applications:

- Extract more variables from vibration signatures, add context parameters
- ▶ Put these tools into the hands of more people and extend methodology to other use cases
- Combine with other data sources (production, tests, maintenance, weather)
- Learn the *actual state* of an engine (integrated over its lifetime)
- Learn a transition model between states

Additional contributions

Open-source software to take home

- DESOM [github.com/FlorentF9/DESOM]
- DeepTemporalClustering [O github.com/FlorentF9/DeepTemporalClustering]
- ► SOMperf [github.com/FlorentF9/SOMperf]
- skstab [O github.com/FlorentF9/skstab]
- Spark ML SOM [github.com/FlorentF9/sparkml-som]

Teaching

- SupGalilée (2018, 2019, 2020)
- ISAE-Supaero (2019)

Scientific outreach

Organization of 1st workshop on Large-Scale Industrial Time Series Analysis (LITSA) @ IEEE ICDM 2020

Thank you for your attention!

Huge thanks to:

- ► The jury members
- ► Safran and ANRT for supporting this project
- ► All my colleagues and collaborators
- ► My thesis supervisors

- 1. Appendix 1 Representation learning for self-organized clustering 🚥
- 2. Appendix 2 Model selection in clustering 😡
- 3. Appendix 3 Scalable aircraft engine health monitoring applications 🚥

Florent Forest – PhD defense Unsupervised Learning of Data Representations and Cluster Structures: Applications to Large-scale Health Monitoring of Turbofan Aircraft Engines

Method	MNIST	Fashion-MNIST	USPS	Reuters-10k
K-means	53.3	54.9	66.0	58.9
AE + K-means	80.1	48.9	68.0	53.8
GMVAE [Dilokthanakul et al., 2017]	82.3	-	-	-
DCN [Yang et al., 2017]	83.0	-	-	80.0
DKM [Fard et al., 2018]	84.0	-	75.7	58.3
DEC [Xie et al., 2016]	86.6	51.8	74.1	73.7
IDEC [Guo et al., 2017]	88.1	52.9	76.1	75.6
VaDE [Jiang et al., 2017]	94.5	-	56.6	79.8
ClusterGAN [Mukherjee et al., 2019]	95.0	63.0	-	-
JULE [Yang et al., 2016]	96.1	56.3	95.0	-
DEPICT [Dizaji et al., 2017]	96.3	39.2	89.9	-
WaMiC [Harchaoui et al., 2019]	97.3	-		79.8
Dual AE [Yang et al., 2019]	98.0	66.2	86.9	-
GAR [Kilinc and Uysal, 2018]	98.3	-	96.5	-
IMSAT [Hu et al., 2017]	98.4	-	71.0	

Table 4: Deep clustering baselines on benchmark data sets (% clustering accuracy).

Florent Forest — PhD defense

Deep Clustering Network (DCN)

Several methods based on (soft) *K*-means [Song et al., 2014, Xie et al., 2016, Guo et al., 2017, Fard et al., 2018]. DCN [Yang et al., 2017]

$$\mathcal{L}(\mathbf{W}_{\mathbf{e}}, \mathbf{W}_{\mathbf{d}}, \{\mathbf{m}_{k}\}_{1}^{K}, \{b_{i}\}_{1}^{N}) := \mathcal{L}_{\mathsf{R}}(\mathbf{W}_{\mathbf{e}}, \mathbf{W}_{\mathbf{d}}) + \gamma \mathcal{L}_{\mathsf{K}\text{-means}}(\mathbf{W}_{\mathbf{e}}, \{\mathbf{m}_{k}\}_{1}^{K}, \{b_{i}\}_{1}^{N}) \text{ where } b_{i} := \underset{k}{\operatorname{argmin}} ||\mathbf{z}_{i} - \mathbf{m}_{k}||^{2}$$
$$= \frac{1}{N} \sum_{i} ||\mathbf{\tilde{x}}_{i} - \mathbf{x}_{i}||_{2}^{2} + \gamma \frac{1}{N} \sum_{i} ||\mathbf{z}_{i} - \mathbf{m}_{b_{i}}||_{2}^{2}$$

Alternating procedure:

- 1. Update cluster assignments
- 2. Jointly update network parameters and centroids

Back to menu

Table 5: Comparison of the properties of deep SOM models.

Model	Latent space	AE	Rec. loss	SOM loss	Neighborhood	Joint	Pretraining
Deep neural maps [Pesteie et al., 2018]	continuous	AE	MSE	KL+SOM	Gaussian	\checkmark	\checkmark
DASOM [Ferles et al., 2018]	continuous	DAE	MSE	SOM	-	\checkmark	\checkmark
ConvSOM [Elend and Kramer, 2019]	continuous	AE	MSE	SOM	Gaussian	×	\checkmark
DESOM [Forest et al., 2019b]	continuous	AE	MSE	SOM	Gaussian	\checkmark	×
SOM-VAE [Fortuin et al., 2019]	discrete	VQ-VAE	ELBO	VQ+SOM	fixed	\checkmark	\checkmark
DPSOM [Manduchi et al., 2020]	continuous	VAE	ELBO	KL+SOM	fixed	\checkmark	\checkmark

Back to menu

Florent Forest — PhD defense

Unsupervised Learning of Data Representations and Cluster Structures: Applications to Large-scale Health Monitoring of Turbofan Aircraft Engines

Visualizing DESOM during training

Figure 6: (Top) DESOM decoded prototypes and (bottom) UMAP visualization of latent space after 0, 10, 20 and 40 training epochs.

Florent Forest – PhD defense Unsupervised Learning of Data Representations and Cluster Structures: Applications to Large-scale Health Monitoring of Turbofan Aircraft Engines

Figure 7: SOM (left) and DESOM (right) maps of the MNIST data set.

Florent Forest — PhD defense

Unsupervised Learning of Data Representations and Cluster Structures: Applications to Large-scale Health Monitoring of Turbofan Aircraft Engines

Figure 8: SOM (left) and DESOM (right) maps of the Fashion-MNIST data set.

Florent Forest – PhD defense Unsupervised Learning of Data Representations and Cluster Structures: Applications to Large-scale Health Monitoring of Turbofan Aircraft Engines

Figure 9: DESOM map (left) and VAE latent space visualization (right) for MNIST.

Florent Forest - PhD defense

Comparison of quantization/topographic/combined errors and topographic product.

Table 6: In original space:

Method	QE	TE	CE	TP
		MM	IIST	
SOM	5.345	0.518	15.78	-0.073
DESOM	5.848	0.597	21.74	-0.104
		Fashio	n-MNIST	
SOM	4.537	0.477	12.40	-0.026
DESOM	4.755	0.536	15.22	-0.046
	USPS			
SOM	3.693	0.474	10.35	-0.055
DESOM	4.025	0.556	14.62	-0.082
		Reute	rs-10k	
SOM	42.70	0.595	102.4	-0.206
DESOM	41.81	0.754	113.8	-0.147

Table 7: In latent space:

Method	QΈ	ΤÊ	ĆĒ	Τ̂Ρ
		M	VIST	
AE+SOM	1.231	0.510	4.429	-0.066
DESOM-AE+SOM	0.205	0.514	<u>0.713</u>	<u>-0.055</u>
DESOM	0.205	0.534	0.727	-0.057
		Fashio	n-MNIST	
AE+SOM	0.960	0.532	3.973	-0.059
DESOM-AE+SOM	0.166	0.572	0.664	-0.044
DESOM	0.167	0.556	0.661	-0.045
		U	SPS	
AE+SOM	3.926	0.689	19.88	-0.098
DESOM-AE+SOM	0.278	0.554	1.174	-0.065
DESOM	0.280	0.563	1.184	-0.069
		Reute	ers-10k	
AE+SOM	30.00	0.934	270.7	-0.146
DESOM-AE+SOM	0.527	0.710	3.391	-0.071
DESOM	0.524	0.696	3.102	-0.069

Back to menu

Florent Forest - PhD defense

Unsupervised Learning of Data Representations and Cluster Structures: Applications to Large-scale Health Monitoring of Turbofan Aircraft Engines

Table 8: Impact of DESOM hyperparameters.

				Cluste	ring metric	Мар	metric
Parameter	Notation	Selected value	Studied range	Pur	NMI	QE	TE
Gamma	γ	10 ⁻³	$10^{-4} - 10^{0}$	ψ	Ψ	₩	↑
Latent code dimension	L	10	2 — 100	\cap	\cap	Ø	ø
Map size	-	8×8	5 imes 5-20 imes 20	↑	\downarrow	Ŧ	↑
Initial temperature	$T_{\rm max}$	8.0	0.1, 8.0	Ø	ø	Ø	Ŧ
Batch size	n _b	256	16 — 256	↑	↑	Ø	Ø
"When <parameter> increases, <metric> ↑ inc ↓ de ∩ ha ∅ is</metric></parameter>		c> ↑ increase ↓ decreas ∩ has an o Ø is not si	es, es, optimal value." ignificantly impacted	qua	ality become	s be wo	etter." orse."

AE pre-training and SOM initialization do not improve performance.

Back to menu

Florent Forest — PhD defense

Unsupervised Learning of Data Representations and Cluster Structures: Applications to Large-scale Health Monitoring of Turbofan Aircraft Engines

Figure 10: Diagram explaining sources of instability in different settings for K-means.

Florent Forest — PhD defense Unsupervised Learning of

Whenever K^* is not the best partition

к	ARI	StabB	StabW	Stadion
1	0.00	++		0 🗡
2	0.74	++	-	+ X
3	0.92	++	+	+++ 🗸
4	0.58		+	- X
5	0.65		++	ο 🗡

Unsupervised Learning of Data Representations and Cluster Structures: Applications to Large-scale Health Monitoring of Turbofan Aircraft Engines

Figure 11: CD diagram after Wilcoxon-Holms test on ARI performance across 73 artificial data sets for *K*-means, Ward, and GMM.

Florent Forest – PhD defense Unsupervised Learning of Data Representations and Cluster Structures: Applications to Large-scale Health Monitoring of Turbofan Aircraft Engines

Stadion hyperparameters and conclusions:

- $\blacktriangleright \ D \in \{1, \dots, \textbf{10}\}$
 - \rightarrow No significant influence
- ► noise: uniform or Gaussian → No significant influence
- ► $\Omega \in \{2, 3, 5, 10, \{2, ..., 5\}, \{2, ..., 10\}, \{10, ..., 20\}, \{2, ..., 20\}\}$ → Best with $\{2, ..., 5\}$ or $\{2, ..., 10\}$
- ► $s \in \{ARI_1, ARI_2, RI, FM, JACC, MI, AMI, VI, NVI, ID, NID, NMI_1, NMI_2, NMI_3, NMI_4, NMI_5\}$
 - \rightarrow No significant influence for most adjusted/normalized measures

Figure 12: fANOVA importance of hyperparameters and their interactions for Stadion-max (top) and mean (bottom).

Distributed clustering algorithms [Aggarwal and Reddy, 2013]

Florent Forest – PhD defense Unsupervised Learning of Data Representations and Cluster Structures: Applications to Large-scale Health Monitoring of Turbofan Aircraft Engines

Figure 13: SOM maps of signature 1, 2, 3 and 4 (LP-ACC1 vs N1, LP-ACC2 vs N1, HP-ACC1 vs N2, HP-ACC2 vs N2).

Florent Forest – PhD defense Unsupervised Learning of Data Representations and Cluster Structures: Applications to Large-scale Health Monitoring of Turbofan Aircraft Engines

References i

Aggarwal, C. C. and Reddy, C. K. (2013). Data Clustering: Algorithms and Applications.

Anouar, F., Badran, F., and Thiria, S. (1998). **Probabilistic self-organizing map and radial basis function networks.** *Neurocomputing*, 20(1-3):83–96.

Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., and Perona, I. (2013). An extensive comparative study of cluster validity indices. Pattern Recognition, 46(1):243–256.

Attaoui, M. O., Azzag, H., Lebbah, M., and Keskes, N. (2020). **Subspace data stream clustering with global and local weighting models.** *Neural Computing and Applications*, 0123456789. https://doi.org/10.1007/s00521-020-05184-z.

Bastard, G., Lacaille, J., Coupard, J., and Stouky, Y. (2016). Engine Health Management in Safran Aircraft Engines. In Annual Conference of the PHM Society.

Ben-David, S. (2018).

Clustering - What both theoreticians and practitioners are doing wrong. AAAI Conference on Artificial Intelligence, pages 7962–7964.

Florent Forest - PhD defense

References ii

Ben-David, S. and Von Luxburg, U. (2008). Relating clustering stability to properties of cluster boundaries. Conference on Learning Theory (COLT), pages 379–390.

Ben-David, S., Von Luxburg, U., and Pál, D. (2006). **A sober look at clustering stability.**

Lecture Notes in Computer Science, 4005(2002):5-19.

Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 17:6–17.

Benabdeslem, K. and Lebbah, M. (2007). Feature selection for self-organizing map.

In International Conference on Information Technology Interfaces (ITI), pages 45-58.

Bengio, Y. (2012).

Deep Learning of Representations for Unsupervised and Transfer Learning.

JMLR: Workshop and Conference Proceedings, 27:17–37.

Biernacki, C., Celeux, G., and Govaert, G. (2000).

Assessing a Mixture Model for Clustering with Integrated Completed likelihood.

IEEE Transactions on Pattern Analysis and Machine Learning, 22(7):1899–1906.

References iii

Bishop, C. M., Svensen, M., and Williams, C. K. I. (1998). GTM: The Generative Topographic Mapping. <i>Neural Computation</i> , 10(1):215–234. http://www.mitpressjournals.org/doi/10.1162/089976698300017953.
Bouveyron, C., Girard, S., and Schmid, C. (2007). High-dimensional data clustering. Computational Statistics and Data Analysis, 52(1):502–519.
Chavent, M., Lacaille, J., Mourer, A., and Olteanu, M. (2020). Sparse k -means for mixed data via group-sparse clustering. In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN).
Côme, E., Cottrell, M., Verleysen, M., and Lacaille, J. (2010a). Aircraft engine health monitoring using Self-Organizing Maps. In Industrial Conference on Data Mining.
Côme, E., Cottrell, M., Verleysen, M., and Lacaille, J. (2010b). Self organizing star (SOS) for health monitoring.

In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), number April, pages 99–104.

References iv

Côme, E., Cottrell, M., Verleysen, M., and Lacaille, J. (2011).

Aircraft engine fleet monitoring using Self-Organizing Maps and Edit Distance.

In International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM), pages 298–307.

Cottrell, M., Gaubert, P., Eloy, C., François, D., Hallaux, G., Lacaille, J., and Verleysen, M. (2009). Fault prediction in aircraft engines using Self-Organizing Maps.

In International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM).

De La Torre, F. and Kanade, T. (2006). Discriminative cluster analysis.

In International Conference on Machine Learning (ICML).

De Soete, G. and Carroll, J. D. (1994).

K-means clustering in a low-dimensional Euclidean space.

In Diday, E., Lechevallier, Y., Schader, M., Bertrand, P., and Burtschy, B., editors, *New Approaches in Classification and Data Analysis*, pages 212–219, Berlin, Heidelberg. Springer Berlin Heidelberg.

Desgraupes, B. (2013).

ClusterCrit: Clustering Indices.

cran.r-project.org/web/packages/clusterCrit.

Dilokthanakul, N., Mediano, P. A. M., Garnelo, M., Lee, M. C. H., Salimbeni, H., Arulkumaran, K., and Shanahan, M. (2017). Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders.

References v

Ding, C. and Li, T. (2007).

Adaptive dimension reduction using discriminant analysis and K-means clustering. In International Conference on Machine Learning (ICML).

Dizaji, K. G., Herandi, A., Deng, C., Cai, W., and Huang, H. (2017).

Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization. In ICCV, pages 5747–5756.

Elend, L. and Kramer, O. (2019).

Self-Organizing Maps with Convolutional Layers.

In International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM).

Elhamifar, E. and Vidal, R. (2013).

Sparse subspace clustering: Algorithm, theory, and applications.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11):2765–2781.

Fard, M. M., Thonet, T., and Gaussier, E. (2018).

Deep k-Means: Jointly Clustering with k-Means and Learning Representations.

http://arxiv.org/abs/1806.10069.

Faure, C., Olteanu, M., Bardet, J.-M., and Lacaille, J. (2017).
Using self-organizing maps for clustering and labelling aircraft engine data phases.
In International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM).

References vi

Ferles, C., Papanikolaou, Y., and Naidoo, K. J. (2018). Denoising Autoencoder Self-Organizing Map (DASOM). <i>Neural Networks</i> , 105:112–131.
https://doi.org/10.1016/j.neunet.2018.04.016.
Forest, F., Cochard, Q., Noyer, C., Cabut, A., Joncour, M., Lacaille, J., Lebbah, M., and Azzag, H. (2020a). Large-scale Vibration Monitoring of Aircraft Engines from Operational Data using Self-organized Models. In Annual Conference of the PHM Society.
Forest, F., Lacaille, J., Lebbah, M., and Azzag, H. (2018). A Generic and Scalable Pipeline for Large-Scale Analytics of Continuous Aircraft Engine Data. In IEEE International Conference on Big Data.
Forest, F., Lebbah, M., Azzag, H., and Lacaille, J. (2019a). Deep Architectures for Joint Clustering and Visualization with Self-Organizing Maps. In PAKDD Workshop on Learning Data Representations for Clustering (LDRC).
Forest, F., Lebbah, M., Azzag, H., and Lacaille, J. (2019b). Deep Embedded SOM: Joint Representation Learning and Self-Organization. In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN).

References vii

Florent Forest - PhD defense

References viii

Jain, A. K. (2010).

Data clustering: 50 years beyond K-means.

Pattern Recognition Letters, 31(8):651-666. http://dx.doi.org/10.1016/j.patrec.2009.09.011.

Jiang, Z., Zheng, Y., Tan, H., Tang, B., and Zhou, H. (2017). Variational Deep Embedding : An Unsupervised and Generative Approach to Clustering. In International Joint Conference on Artificial Intelligence (IJCAI), pages 1965–1972.

Kaly, F., Niang, N., Ouattara, M., Niang, A., Thiria, S., Marticorena, B., and Janicot, S. (2004).

Two step soft subspace SOM : une méthode de classification multi-bloc avec sélection de variables.

Kilinc, O. and Uysal, I. (2018).

Learning latent representations in neural networks for clustering through pseudo supervision and graph-based activity regularization.

In International Conference on Learning Representations (ICLR).

Kleinberg, J. (2003).

An impossibility theorem for clustering.

Advances in Neural Information Processing Systems.

Kohonen, T. (1982).

Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1):59–69.

Florent Forest — PhD defense

References ix

Lange, T., Roth, V., Braun, M. L., and Buhmann, J. M. (2004). Stability-based validation of clustering solutions. Neural Computation, 16(6):1299–1323.

Lee, J. A. and Verleysen, M. (2007). *Nonlinear Dimensionality Reduction.* Springer.

Manduchi, L., Hüser, M., Rätsch, G., and Fortuin, V. (2020). DPSOM: Deep Probabilistic Clustering with Self-Organizing Maps. http://arxiv.org/abs/1910.01590.

http://arxiv.org/abs/1910.015

Martinetz, T. and Schulten, K. (1991). A "Neural-Gas" Network Learns Topologies.

http://web.cs.swarthmore.edu/\$\sim\$meeden/DevelopmentalRobotics/fritzke95.pdf.

Martinetz, T. and Schulten, K. (1994).

Topology representing networks.

Neural Networks, 7(3):507–522.

Mourer, A., Forest, F., Lebbah, M., Azzag, H., and Lacaille, J. (2020). Selecting the Number of Clusters K with a Stability Trade-off: an Internal Validation Criterion. https://arxiv.org/abs/2006.08530.

Florent Forest — PhD defense
References x

Mukherjee, S., Asnani, H., Lin, E., and Kannan, S. (2019). ClusterGAN: Latent Space Clustering in Generative Adversarial Networks. AAAI Conference on Artificial Intelligence, 33:4610–4617.

https://aaai.org/ojs/index.php/AAAI/article/view/4385.

Pesteie, M., Abolmaesumi, P., and Rohling, R. (2018).

Deep Neural Maps.

In ICML workshop.

http://arxiv.org/abs/1810.07291.

Randall, R. B. (2011).

Vibration-based condition monitoring. Wiley.

Roth, V., Lange, T., Braun, M., and Buhmann, J. (2002).

A Resampling Approach to Cluster Validation.

Compstat, pages 123–128.

Sarazin, T., Azzag, H., and Lebbah, M. (2014).

SOM clustering using spark-MapReduce.

In International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

Shalev-Shwartz, S. and Ben-David, S. (2013).

Understanding machine learning: From theory to algorithms, volume 9781107057.

References xi

References xii

Xie, J., Girshick, R., and Farhadi, A. (2016). **Unsupervised Deep Embedding for Clustering Analysis.** In International Conference on Machine Learning (ICML), volume 48. http://arxiv.org/abs/1511.06335.

Yang, B., Fu, X., Sidiropoulos, N. D., and Hong, M. (2017). **Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering.** In International Conference on Machine Learning (ICML). http://arxiv.org/abs/1610.04794.

Yang, J., Parikh, D., and Batra, D. (2016).

Joint Unsupervised Learning of Deep Representations and Image Clusters.

http://arxiv.org/abs/1604.03628.

Yang, X., Deng, C., Zheng, F., Yan, J., and Liu, W. (2019). Deep spectral clustering using dual autoencoder network. In *CVPR*, pages 4061–4070.

Ye, J. (2007).

Discriminative K-means for Clustering. In *NIPS*.