
Deep Architectures for Joint Clustering and

Visualization with Self-Organizing Maps

Florent Forest1,2[0000−0001−6878−8752], Mustapha Lebbah1[0000−0001−7245−6371],
Hanane Azzag1[0000−0001−6876−0688], and Jérôme Lacaille2

1 Université Paris 13, Laboratoire d'Informatique de Paris-Nord (LIPN),
93430 Villetaneuse, France

2 Safran Aircraft Engines, 77550 Moissy-Cramayel, France
forest@lipn.univ-paris13.fr

Abstract. Recent research has demonstrated how deep neural networks
are able to learn representations to improve data clustering. By con-
sidering representation learning and clustering as a joint task, models
learn clustering-friendly spaces and achieve superior performance, com-
pared with standard two-stage approaches where dimensionality reduc-
tion and clustering are performed separately. We extend this idea to
topology-preserving clustering models, known as self-organizing maps
(SOM). First, we present the Deep Embedded Self-Organizing Map (DE-
SOM), a model composed of a fully-connected autoencoder and a custom
SOM layer, where the SOM code vectors are learnt jointly with the au-
toencoder weights. Then, we show that this generic architecture can be
extended to image and sequence data by using convolutional and recur-
rent architectures, and present variants of these models. First results
demonstrate advantages of the DESOM architecture in terms of cluster-
ing performance, visualization and training time.

Keywords: clustering · self-organizing map · representation learning ·
deep learning · autoencoder.

1 Introduction and related work

1.1 Joint Representation Learning and Clustering

Representations learned by deep neural networks are successful in a wide range
of supervised learning tasks such as classi�cation. Recent research has demon-
strated how deep neural networks are able to learn representations to improve
unsupervised tasks, such as clustering, in particular for high-dimensional data
where traditional clustering algorithms tend to be ine�ective. Most clustering
algorithms, the most well-know example being the k-means algorithm, rely on
similarity metrics (e.g. euclidean distance) that become meaningless in very high-
dimensional spaces. The standard solution is to �rst reduce the dimensionality
and then cluster the data in a low-dimensional space. This can be achieved
by using, for example, linear dimensionality reduction techniques as Principal
Component Analysis (PCA), or models with more expressive power such as

2 F. Forest et al.

deep autoencoder neural networks (AE). In other words, this standard approach
�rst optimizes a pure information loss criterion between data points and their
low-dimensional embeddings (generally via a reconstruction loss between a data
point and its reconstruction), and then optimize a pure clustering criterion (e.g.
k-means quantization error). In contrast, recent deep clustering approaches treat
representation learning and clustering as a joint task and focus on learning rep-
resentations that are clustering-friendly, i.e. that preserve the prior knowledge
of cluster structure.

One of the early approaches, Deep Embedded Clustering (DEC) [17], jointly
learns representations and soft cluster assignments by optimizing a KL-divergence
that minimizes within-cluster distance; IDEC [5] improves on this approach by
optimizing the reconstruction loss jointly with the KL-divergence. The Deep
Clustering Network (DCN) [18] combines representation learning with k-means
clustering using an alternating training procedure to alternately update the au-
toencoder weights, cluster assignments and centroid vectors. A review of deep
clustering is available in [1]. More recently, [3] overcame the non-di�erentiability
of hard cluster assignments by introducing a smoothed version of the k-means
loss.

Most recent approaches perform clustering using generative models such as
variational autoencoders (VAE) with a gaussian mixture model (GMM) prior
[8] or Wasserstein generative adversarial networks (WGAN) with GMM prior [6]
and achieve state-of-the-art performance.

While the previously mentioned work do not make speci�c assumptions on
the type of data and its regularities, other methods focus on speci�c types of
data. For image data, it is common to use architectures based on convolutional
neural networks (CNN) that leverage the two-dimensional regularity of images
to share weights across spatial locations, as in [19] or [1]. Convolutional ar-
chitectures can also be used for data with a one-dimensional regularity, such as
(multivariate) time series. In this case, one-dimensional causal convolutions (also
called temporal convolutions) are adapted. In particular, dilated convolutions are
particularly successful in learning long-term dependencies, and even outperform
recurrent LSTM networks on various tasks [2]. We are not aware of any ap-
plication of these architectures for clustering, and will expose this idea in the
last section. On the other hand, deep clustering of time series using an LSTM-
based architecture was tackled in a recent unpublished work, Deep Temporal
Clustering [14].

1.2 Joint Representation Learning and Self-Organization

We focus on a speci�c family of clustering algorithms called self-organizing
maps, which perform simultaneous clustering and visualization by projecting
high-dimensional data onto a low-dimensional map (typically two-dimensional
for visualization purpose) having a grid topology. The grid is composed of units,
also called neurons or cells. Each map unit is associated with a prototype vector

from the original data space (also called code vector). Self-organizing map al-
gorithms enforce a topological constraint on the map, so that neighboring units

Deep Architectures for Joint Clustering and Visualization 3

on the map correspond to prototype vectors that are close in the original high-
dimensional space. The most well-known self-organizing map model is Kohonen's
self-organizing map (SOM) [10,11].

In this work, we propose several architectures for joint representation learning
and self-organization with SOM. The main goals are to:

1. Learn the feature space and the SOM code vectors simultaneously, without
using a two-stage approach.

2. Find a SOM-friendly space (using the term coined by [18]), i.e. a latent
space that is more adapted to the SOM algorithm, according to some quality
metric.

The SOM prototypes are learned in the latent space. To learn this new rep-
resentation, we use an autoencoder neural network, composed of an encoder
network that maps data points to the latent space, and a decoder network that
reconstructs latent points into vectors of the original data space. For visualiza-
tion and interpretation of the map, we need the prototypes to lie in the original
feature space, so we reconstruct them using the decoder part of the autoencoder
network. This approach very much resembles joint representation learning and
clustering, but with an additional topology constraint. Our experiments show
that using autoencoders with su�ciently high capacity yields meaningful low-
dimensional representations of high-dimensional data that facilitate SOM learn-
ing and improve clustering performance, and that self-organization and represen-
tation learning can be achieved in a single joint task, thus cutting down overall
training time.

To the best of our knowledge, the only other work performing joint repre-
sentation learning with a SOM is the SOM-VAE model introduced in a recent
unpublished work [4]. Their model is based on the VQ-VAE (Vector Quantization
Variational Autoencoder) model which enables to train variational autoencoders
(VAEs) with a discrete latent space [15]. [4] have added a topology constraint
on the discrete latent space by modifying the loss function of VQ-VAE. How-
ever, there are many important di�erences between our DESOM model and
SOM-VAE. First, SOM-VAE utilizes a discrete latent space to represent the
SOM prototypes, whereas in DESOM, the SOM is learned in a continuous la-
tent space. Secondly, they use a �xed window neighborhood to update the map
prototypes, whereas we use a gaussian neighborhood with exponential radius
decay. Finally, the DESOM model presented in this work is based on a deter-
ministic autoencoder and not a VAE. Using a VAE in DESOM is left as future
work.

We will �rst present our model with a generic, fully-connected, feed-forward
autoencoder. The last sections will extend it to convolutional and recurrent
architectures. Code is available at https://github.com/FlorentF9/DESOM.

2 DESOM: Deep Embedded SOM

We propose an approach where self-organization of the SOM prototypes and rep-
resentation learning through a deterministic autoencoder are performed jointly

https://github.com/FlorentF9/DESOM

4 F. Forest et al.

i
n
p
u
t
(7
84
)

f
c
(5
00
)

f
c
(5
00
)

f
c
(2
00
0)

f
c
(1
0)

o
u
t
p
u
t
(7
84
)

f
c
(5
00
)

f
c
(5
00
)

f
c
(2
00
0)

input reconstruction

latent space

SOM layer (64× 10)

Fig. 1. Architecture of DESOM layers with an 8× 8 map and 10-dimensional latent.

by stochastic gradient descent. The architecture of DESOM, in the case of a
fully-connected AE dimensioned for the MNIST dataset, a 10-dimensional la-
tent space and an 8× 8 map, is illustrated in �gure 1.

2.1 Loss function

We note X = {xi}1≤i≤N the data samples. The self-organizing map is composed
ofK units, associated with the set of prototype vectors {mk}1≤k≤K . δ(k, l) is the
topographic distance between units k and l on the map (Manhattan distance for
a 2D grid). We de�ne the neighborhood function of the SOM and a temperature
parameter T , controlling the radius of the neighborhood. In this work, we adopt

a gaussian neighborhood: KT (d) = e−
d2

T2 , and exponential temperature decay.
The encoder and decoder parameter weights are respectively noted We and

Wd. The encoding function is denoted by fWe and the decoding function by
gWd

. Thus, zi = fWe(xi) is the embedded version of xi in the intermediate latent
space, and x̃i = gWd

(fWe(xi)) is its reconstruction by the decoder. Our goal
is to jointly optimize the autoencoder network weights and the SOM prototype
vectors. For this task, we de�ne a loss function composed of two terms, that can
be written as:

L(We,Wd,m1, . . . ,mK , χ) = Lr(We,Wd)+γLsom(We,m1, . . . ,mK , χ) (1)

The �rst term Lr is the autoencoder reconstruction loss, chosen to be a simple
least squares loss:

Lr(We,Wd) =
∑
i

||x̃i − xi||2 (2)

Deep Architectures for Joint Clustering and Visualization 5

The second term is the self-organizing map loss, denoted Lsom. It depends on
the set of parameters {mk}1≤k≤K and on the assignement function, denoted χ,
assigning a data point to its closest prototype according to euclidean distance,
i.e.:

χ(z) = argmin
k
||z−mk||2 (3)

The expression of the self-organizing map loss is:

Lsom(We,m1, . . . ,mK , χ) =
∑
i

K∑
k=1

KT (δ(χ(zi), k)) ||zi −mk||2 (4)

Note that when T converges towards zero, the SOM loss becomes identical to
a k-means loss, thus our model converges towards a model equivalent to DCN [18]
or DKM [3]. Finally, the hyperparameter γ trades o� between minimizing the
autoencoder reconstruction loss and the self-organizing map loss.

2.2 Gradients and training

We use a joint training procedure optimizes both the network parameters and
the prototypes using stochastic gradient descent (with the Adam optimization
scheme [9]), as the Lr loss is di�erentiable; the only non-di�erentiable parts are
the weighting terms wi,k ≡ KT (δ(χ(zi), k)) of the SOM loss. To alleviate this,
we compute the best matching units for the current (encoded) batch and �x the
assignment function χ between each optimization step. Thus, these terms wi,k

become constant with respect to the network parameters and the prototypes.
This requires to compute the pairwise euclidean distances between the map
prototypes and the current batch of (encoded) samples between each SGD step.
The gradients of the loss function L w.r.t. autoencoder weights and prototypes
are easy to derive if we consider the assignment function to be �xed at each step:

∂L
∂We

=
∂Lr

∂We
+ γ

∂Lsom

∂We
(5)

∂L
∂Wd

=
∂Lr

∂Wd
(6)

∂L
∂mk

= γ
∂Lsom

∂mk
(7)

The gradients for a single data point xi are:

6 F. Forest et al.

∂Li
r

∂We
= 2(gWd

(fWe(xi))− xi)
∂gWd

(fWe(xi))

∂We
(8)

∂Li
r

∂Wd
= 2(gWd

(fWe(xi))− xi)
∂gWd

(fWe(xi))

∂Wd
(9)

∂Li
som

∂We
= 2

K∑
k=1

wi,k(fWe(xi)−mk)
∂fWe(xi)

∂We
(10)

∂Li
som

∂mk
= 2wi,k(mk − fWe(xi)) (11)

input
Encoder
We

Decoder
Wd

SOM
mk

Lr

γLsom

∂Lr

∂Wd

γ ∂Lsom

∂mk

∂Lr

∂We

γ ∂Lsom

∂We

Fig. 2. Path of gradients in the DESOM model.

The paths of the gradients of the loss function are illustrated on �gure 2.
We optimize 1 using backpropagation and minibatch stochastic gradient descent
(SGD), with a learning rate lr (in our experiments Adam is used instead, but
the equations are derived for vanilla SGD). Given a batch of nb samples, the
encoder's weights are updated by:

We ←We −
lr
nb

nb∑
i=1

(
∂Li

r

∂We
+ γ

∂Li
som

∂We

)
(12)

The decoder's weights are updated by:

Wd ←Wd −
lr
nb

nb∑
i=1

∂Li
r

∂Wd
(13)

And �nally, the map prototypes are updated by the following update rule:

mk ←mk −
lr
nb

nb∑
i=1

γ
∂Li

som

∂mk
(14)

Deep Architectures for Joint Clustering and Visualization 7

2.3 Training procedure

The training procedure is detailed in algorithm 1.

Input: training set X; SOM dimensions (m, n); initial and �nal temperatures
Tmax, Tmin; number of iterations iterations; batch size batchSize

Output: AE weights We, Wd; SOM code vectors {mk}
Initialize AE weights We, Wd (Glorot uniform scheme) ;
Initialize SOM parameters {mk} (with random data sample) ;
for iter = 1, . . . , iterations do

T ← Tmax

(
Tmin
Tmax

)iter/iterations

;

Load next training batch ;
Encode current batch and compute weights wi,k ;
Train DESOM on batch by taking a SGD step (by 12, 13 and 14) ;

end

Algorithm 1: DESOM training procedure

3 Evaluation

We evaluated the clustering and visualization performance of our model on stan-
dard classi�cation benchmark datasets. In this section, we will detail our evalu-
ation methodology and the results on the MNIST and REUTERS-10k datasets.

Datasets The MNIST dataset [12] consists in 70000 grayscale images of hand-
written digits, of size 28-by-28 pixels. We divided pixel intensities by 255 to ob-
tain a 0-1 range and �attened the images into 784-dimensional vectors. REUTERS-
10k [13] is a text dataset built from the RCV1-v2 corpus. REUTERS-10k is
created by restricting the documents to 4 classes, sampling a subset of 10000 ex-
amples and computing TF-IDF features on the 2000 most frequently occurring
words. We used the same preparation code as in [5].

Qualitative evaluation We assessed that, just like a standard SOM, our model
produces a topologically organized map for e�cient visualization, and that the
decoded code vectors are of high quality. An example of DESOMmap for MNIST
can be seen on �gure 3. We veri�ed that the capacity of the AE (number of
layers and units) was directly linked with the visual quality of the prototypes. In
particular, using standard SOM directly on this kind of data produces blurred
prototype images, due to averaging in original space.

Quantitative evaluation Then, we evaluated the clustering quality of DE-
SOM by measuring two common external clustering indices, purity and NMI
(Normalized Mutual Information). We compared DESOM with 5 other SOM-
based models:

8 F. Forest et al.

Fig. 3. Decoded prototypes visualized on a DESOM map for MNIST.

� minisom: a standard SOM (from minisom module3).
� kerasom: our implementation of a SOM in Keras (equivalent to DESOM
with identity encoder and decoder) and trained by SGD.

� AE+minisom: a two-stage approach where minisom is �t on the encoded
dataset using an autoencoder with the same architecture as the one used in
DESOM.

� AE+kerasom: the same two-stage approach but with our kerasom model,
resulting in DESOM without joint optimization of AE and SOM.

� SOM-VAE: results from the author's paper [4] (only for MNIST).
� DESOM: our proposed DESOM model with joint representation learning
and self-organization.

In all models, the AE has a [500, 500, 2000, 10] architecture and the map has
8×8 units. The γ parameter was �xed empirically to 0.001, number of iterations
is 10000 with a batch size of 256. Results are summarized in table 1. Results
on MNIST show that reducing dimensionality with an autoencoder improves
clustering quality. DESOM and AE+kerasom perform best and have similar
results, but DESOM requires no pre-training. However, the AE struggles to
�nd good representations on REUTERS-10k, and DESOM outperforms all other
models by a large margin, suggesting that joint training with a self-organizing
map prior has enabled to learn SOM-friendly representations.

Training time An advantage of joint training is reduced training time of DE-
SOM compared with AE+kerasom (other models cannot be compared due to
di�erence in implementation). Indeed, to obtain the results listed in table 1,
kerasom and DESOM were trained for the same number of iterations and re-
quired the same training time (about 2 minutes on MNIST on a laptop GPU). If

3 https://github.com/JustGlowing/minisom

https://github.com/JustGlowing/minisom

Deep Architectures for Joint Clustering and Visualization 9

Table 1. Clustering performance of SOM-based models according to purity and NMI
(mean and standard deviation on 10 runs). Best performance in bold.

MNIST REUTERS-10k
Method purity NMI purity NMI

minisom (8× 8) 0.637 ± 0.023 0.430 ± 0.016 0.690 ± 0.028 0.230 ± 0.024
kerasom (8× 8) 0.826 ± 0.005 0.565 ± 0.003 0.697 ± 0.067 0.324 ± 0.051
AE+minisom (8× 8) 0.872 ± 0.017 0.616 ± 0.010 0.690 ± 0.021 0.235 ± 0.015
AE+kerasom (8× 8) 0.939 ± 0.003 0.661 ± 0.002 0.777 ± 0.012 0.306 ± 0.010
SOM-VAE (8× 8) 0.868 ± 0.003 0.595 ± 0.002 - -
DESOM (8× 8) 0.939 ± 0.004 0.657 ± 0.004 0.849 ± 0.011 0.381 ± 0.009

we add the AE pretraining time, the overall training time of AE+kerasom nearly
doubles (we pretrained for 200 epochs). As a conclusion, the joint representation
learning adds almost no training time overhead.

4 Architecture variants

In this section, we present extensions of the generic DESOM architecture for data
with structural regularities such as images and sequential data (e.g. multivariate
timeseries). The advantage of deep architectures is that we only need to change
the representation learning part of the model (autoencoder), that maps the input
to its latent embedding; the SOM layer, training procedure and loss function
remain the same.

4.1 ConvDESOM: convolutions for images and sequences

For image data, we can replace the fully-connected autoencoder with a convo-
lutional autoencoder and a typical architecture for image recognition, composed
of alternating 2D convolutions and pooling operations. An example of such an
architecture, that we call ConvDESOM, is represented on �gure 4. The output
of the encoder is now a 2D feature map that is �attened before serving as input
to the SOM layer. The decoder is composed of convolutional and up-sampling
layers.

For sequence data and time series in particular, the same type of architecture
can be used, but with 1D convolutions instead. The exact architecture depends
on the use case:

� Pooling layers will mitigate location dependance.
� Convolutions may be causal and/or dilated (dilation allows to increase the
receptive �eld exponentially with the network depth while keeping the num-
ber of parameters low, thus allowing for long e�ective memory [2]).

� Convolution kernel size, dilation, padding policy, pooling and the number of
layers have a direct in�uence on the dimensionality of the latent code used
by the SOM layer.

10 F. Forest et al.

c
o
n
v

m
a
x
p
o
o
l

c
o
n
v

m
a
x
p
o
o
l

C
o
d
e

flatten reshape

SOM layer

c
o
n
v

u
p
s
a
m
p
l
i
n
g

c
o
n
v

u
p
s
a
m
p
l
i
n
g

c
o
n
v

input reconstruction

Fig. 4. Architecture of the ConvDESOM model variant (example for 2D images).

We are still conducting experiments on these architectures.

4.2 LSTM-DESOM: recurrent architecture for sequences

In this last section, we propose a recurrent variant of DESOM, called LSTM-
DESOM, based on Long Short-Term Memory (LSTM) cells [7]. This architecture
is targeting sequential data, and like causal convolutions, recurrent networks can
handle sequences of arbitrary length. It is based on an LSTM autoencoder [16],
which is a particular case of the LSTM encoder-decoder architecture that learns a
code representation from an input sequence and then reconstructs this sequence.
Similarly to the standard DESOM presented in the second section, the latent
representation is used to learn the SOM code vectors. An unrolled illustration
of a basic LSTM-DESOM architecture is represented in �gure 5.

s0 s1 s2

C
o
d
e

ŝ2 ŝ1 ŝ0

C
o
d
e

copy

input sequence

reconstructed sequence

SOM layer

latent space

Fig. 5. Unrolled architecture of the LSTM-DESOM model variant.

In practice, the model can have multiple layers, and may condition the de-
coder on the reversed input sequence for reconstruction (see [16]). A slightly
more complex architecture is used in [14] for joint representation learning and

Deep Architectures for Joint Clustering and Visualization 11

clustering of time series. Again, no experiments with this architecture have been
conducted yet.

5 Conclusion and future work

The Deep Embedded Self-Organizing Map extends the ideas of joint repre-
sentation learning and clustering to topology-preserving clustering with self-
organizing maps. It can be used to explore and visualize large, high-dimensional
datasets, and the architecture can be adapted for various types of data, in-
cluding images and sequences. Compared with other SOM-based algorithms, it
shows similar or superior performance. By combining representation learning and
self-organization in a joint task, it reduces overall training time compared with
traditional two-stage approaches. The speci�c properties of the SOM-friendly

latent space learned by DESOM need to be studied more thoroughly in future
work. Future work will also include the study and evaluation of the convolutional
and recurrent variants of DESOM.

References

1. Aljalbout, E., Golkov, V., Siddiqui, Y., Cremers, D.: Clustering with Deep Learn-
ing: Taxonomy and New Methods (2018), http://arxiv.org/abs/1801.07648

2. Bai, S., Kolter, J.Z., Koltun, V.: An Empirical Evaluation of Generic
Convolutional and Recurrent Networks for Sequence Modeling (2018).
https://doi.org/10.1016/S0925-5273(03)00047-1, http://arxiv.org/abs/1803.

01271

3. Fard, M.M., Thonet, T., Gaussier, E.: Deep k-Means: Jointly Clustering with k-
Means and Learning Representations (2018), http://arxiv.org/abs/1806.10069

4. Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., Rätsch, G.: Deep Self-
Organization: Interpretable Discrete Representation Learning on Time Series
(2018), http://arxiv.org/abs/1806.02199

5. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local
structure preservation. In: IJCAI. pp. 1753�1759 (2017)

6. Harchaoui, W., Mattei, P., Alamansa, A., Bouveyron, C.: Wasserstein Adversarial
Mixture Clustering (2018), https://hal.archives-ouvertes.fr/hal-01827775/

7. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Computation
9(8), 1735�1780 (1997)

8. Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational Deep Embedding : An
Unsupervised and Generative Approach to Clustering. In: IJCAI. pp. 1965�1972
(2017). https://doi.org/10.24963/ijcai.2017/273

9. Kingma, D.P., Ba, J.L.: Adam: A Method For Stochastic Optimization. In: ICLR
(2015), http://arxiv.org/abs/1412.6980

10. Kohonen, T.: Self-organized formation of topologically correct feature maps. Bio-
logical Cybernetics 43(1), 59�69 (1982). https://doi.org/10.1007/BF00337288

11. Kohonen, T.: The Self-Organizing Map. In: Proceedings of the IEEE. vol. 78, pp.
1464�1480 (1990). https://doi.org/10.1109/5.58325

12. LeCun, Y., Bottou, L., Bengio, Y., Ha�ner, P.: Gradient-based Learning
Applied to Document Recognition. In: Proceedings of the IEEE (1998).
https://doi.org/10.1109/5.726791

http://arxiv.org/abs/1801.07648
https://doi.org/10.1016/S0925-5273(03)00047-1
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1806.10069
http://arxiv.org/abs/1806.02199
https://hal.archives-ouvertes.fr/hal-01827775/
https://doi.org/10.24963/ijcai.2017/273
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/BF00337288
https://doi.org/10.1109/5.58325
https://doi.org/10.1109/5.726791

12 F. Forest et al.

13. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A New Benchmark Collection for
Text Categorization Research. Journal of Machine Learning Research 5, 361�397
(2004), http://dl.acm.org/citation.cfm?id=1005332.1005345

14. Madiraju, N.S., Sadat, S.M., Fisher, D., Karimabadi, H.: Deep Temporal Clus-
tering : Fully Unsupervised Learning of Time-Domain Features pp. 1�11 (2018),
http://arxiv.org/abs/1802.01059

15. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural Discrete Representation
Learning. In: NIPS (2017), http://arxiv.org/abs/1711.00937

16. Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised Learning of
Video Representations using LSTMs (2015). https://doi.org/citeulike-article-
id:13519737, http://arxiv.org/abs/1502.04681

17. Xie, J., Girshick, R., Farhadi, A.: Unsupervised Deep Embedding for Clustering
Analysis. In: ICML. vol. 48 (2015). https://doi.org/10.1007/JHEP01(2016)157,
http://arxiv.org/abs/1511.06335

18. Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards K-means-friendly Spaces:
Simultaneous Deep Learning and Clustering. In: ICML (2016), http://arxiv.org/
abs/1610.04794

19. Yang, J., Parikh, D., Batra, D.: Joint Unsupervised Learning of Deep Repre-
sentations and Image Clusters (2016). https://doi.org/10.1109/CVPR.2016.556,
http://arxiv.org/abs/1604.03628

http://dl.acm.org/citation.cfm?id=1005332.1005345
http://arxiv.org/abs/1802.01059
http://arxiv.org/abs/1711.00937
https://doi.org/citeulike-article-id:13519737
https://doi.org/citeulike-article-id:13519737
http://arxiv.org/abs/1502.04681
https://doi.org/10.1007/JHEP01(2016)157
http://arxiv.org/abs/1511.06335
http://arxiv.org/abs/1610.04794
http://arxiv.org/abs/1610.04794
https://doi.org/10.1109/CVPR.2016.556
http://arxiv.org/abs/1604.03628

	Deep Architectures for Joint Clustering and Visualization with Self-Organizing Maps

