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Abstract. In the wake of recent advances in joint clustering and deep

learning, we introduce the Deep Embedded Self-Organizing Map, a model

that jointly learns representations and the code vectors of a self-organizing

map. Our model is composed of an autoencoder and a custom SOM layer

that are optimized in a joint training procedure, motivated by the idea that

the SOM prior could help learning SOM-friendly representations. We eval-

uate SOM-based models in terms of clustering quality and unsupervised

clustering accuracy, and study the bene�ts of joint training.

1 Introduction

After the successes of neural networks in supervised learning, recent research has
focused on learning representations for unsupervised tasks, and cluster analysis
in particular. Traditional algorithms tend to be ine�ective on high-dimensional
data where similarity metrics become meaningless. A solution is to �rst reduce
dimensionality, then cluster in a low-dimensional space. This can be achieved
with linear techniques as Principal Component Analysis, or more expressive
models such as deep autoencoders. In this two-stage approach, we (1) optimize
a pure information loss criterion between data points and their embeddings (gen-
erally via a reconstruction loss) (2) optimize a pure clustering criterion using a
clustering algorithm. In contrast, deep clustering approaches [1�7] treat repre-
sentation learning and clustering as a joint task and learn a clustering-friendly

space preserving prior knowledge of cluster structure. See [8] for a review.
The self-organizing map (SOM) [9] achieves simultaneous clustering and visu-

alization by projecting high-dimensional data onto a low-dimensional grid. The
grid is composed of units, each one associated with a prototype vector from the
original data space (also called code vector). The learning algorithm enforces
a topology constraint, so that neighboring map units correspond to prototypes
that are close in the original space, according to euclidean distance. We intro-
duce the Deep Embedded SOM (DESOM), a model that jointly learns a SOM
and a latent space that is more adapted to the SOM algorithm, according to some
quality metric. Using the term coined by [4], we seek a SOM-friendly space. We
represent the mappings between original and latent space by an autoencoder
(AE). The prototypes lie in its intermediate space and are reconstructed for
visualization and interpretation purposes. This approach resembles joint repre-
sentation learning and clustering, but with an additional topology constraint,
and has clear advantages: (1) Autoencoders yield meaningful low-dimensional
representations that improve general performance of SOM. (2) Self-organization
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Fig. 1: DESOM architecture with an 8× 8 map.

and representation learning can be achieved as a joint task, improving classi�-
cation performance and cutting down training time.

To the best of our knowledge, the only similar work is the SOM-VAE [10].
SOM-VAE add a topology constraint to the VQ-VAE [11] loss function. However,
SOM-VAE uses a discrete latent space, whereas in DESOM, the SOM is learned
in a continuous latent space. Second, they use a �xed window neighborhood
function, whereas we use a gaussian neighborhood with exponential radius decay.
Finally, DESOM is based on a deterministic AE instead of a VAE.

2 Proposition

The proposed architecture is illustrated in Fig. 1. The self-organizing map is
composed of K units, corresponding to prototype vectors {mk}1≤k≤K . δ(·, ·) is
the topographic distance between two units on the map. We adopt a gaussian
neighborhood function KT (d) = e−d

2/T 2

, depending on a temperature parameter
T , controlling the radius of the neighborhood. Temperature decays exponentially
at each training iteration. The encoder and decoder parameters are respectively
noted We and Wd. zi = fWe(xi) is the embedding of a data point xi in the
intermediate latent space, and x̃i = gWd

(zi) is its reconstruction by the decoder.
We de�ne a loss function composed of two terms:

L(We,Wd,m1, . . . ,mK , χ) = Lr(We,Wd)+γLsom(We,m1, . . . ,mK , χ) (1)

The �rst term Lr is a least squares reconstruction loss. The second term
Lsom is the self-organizing map loss. It depends on the parameters {mk} and
the assignment function χ(z) = argmink||z−mk||2. It is de�ned as follows:



Lsom =
∑
i

K∑
k=1

KT (δ(χ(fWe(xi)), k)) ||fWe(xi)−mk||2 (2)

Note that when the temperature approaches zero, the SOM loss becomes
identical to a k-means loss, and our model thus converges towards DCN [4] or
DKM [5] (at the end of their hyperparameter annealing):

lim
T→0
Lsom =

∑
i

||fWe(xi)−mχ(fWe (xi))||2 (3)

The coe�cient γ trades o� between reconstruction loss and SOM loss. Our
joint training procedure �xes χ between each optimization step, as it is non-
di�erentiable. Thus, we can de�ne constant weights wi,k ≡ KT (δ(χ(fWe(xi)), k)).
Under this assumption, the partial derivatives of the loss function are easy to
derive. The path of the gradients is illustrated on Fig. 2.
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Fig. 2: Path of DESOM gradients.

3 Implementation

The code for DESOM1 was implemented in Keras and partly inspired by IDEC2.
The main novelty is a custom SOM layer, parameterized by a K × L matrix
where K is the number of units and L is the latent dimensionality. The outputs
are the pairwise squared euclidean distances between the input batch and the
prototypes: this allows to express the SOM loss as a weighted sum, using the
weight terms wi,k. The whole training procedure is detailed in algorithm 1.

4 Experiments

We conducted experiments on classi�cation benchmark datasets described in
Tab. 1. SOM-based models are evaluated in two ways: (1) Quantitative as-
sessment of clustering quality using purity and NMI metrics. We also evaluate
their classifying power (without removing the topology constraint) by perform-
ing k-means clustering on the resulting prototypes, and measure unsupervised

1https://github.com/FlorentF9/DESOM
2https://github.com/XifengGuo/IDEC

https://github.com/FlorentF9/DESOM
https://github.com/XifengGuo/IDEC


Input: training set; SOM topology; Tmax; Tmin; iterations; batchSize
Output: AE weights We, Wd; SOM code vectors {mk}
Initialize AE (Glorot uniform) and SOM parameters (random samples) ;
for iter = 1, . . . , iterations do

T ← Tmax (Tmin/Tmax)
iter/iterations

;
Load next training batch ;
Predict SOM pairwise distances on batch and compute weights wi,k ;
Train DESOM on batch ;

end

Algorithm 1: DESOM training procedure

Dataset description examples classes dimension
MNIST [12] images (digits) 70000 10 784
Fashion-MNIST [13] images (clothing) 70000 10 784
REUTERS-10k [14] text (TF-IDF) 10000 4 2000

Table 1: Dataset statistics

clustering accuracy. (2) Qualitative assessment of the self-organization of the
resulting map, as our model must be topology-preserving.

4.1 Baselines and compared models

We evaluate minisom, a standard SOM3; kerasom, our Keras implementation
of a SOM (DESOM with identity encoder); AE+minisom and AE+kerasom,
with AE and SOM trained separately; and �nally DESOM. We also include
SOM-VAE and k-means (keeping in mind that it lacks self-organization).

4.2 Training parameters

All models are trained for 10000 iterations with a batch size of 256 using the
Adam optimizer [15]. Initial and �nal temperatures are Tmax = 10.0 and Tmin =
0.1. The AE is symmetric with a [500, 500, 2000, 10] encoder architecture, and
the map has 8 × 8 units (to compare with previous work). Empirically, we
�xed γ = 0.001 across all experiments, without cross-validation to remain in
a fully unsupervised setting. Large values of γ lead to degenerate solutions
for the autoencoder, due to the SOM loss being easier to optimize than the
reconstruction loss. Moreover, the model is not very sensitive to the value of γ
as long as it stays in this order of magnitude. Pretraining is bene�cial in most
deep clustering approaches, either layer-wise [2,4] [6], RBM [1] or end-to-end [5].
However, initializing DESOM with pretrained AE weights does not lead to any
improvement, because the SOM loss produces strong gradients at the beginning
of training that disturb encoder weights and cancel out pretraining. Thus, we
use no pretraining.

3https://github.com/JustGlowing/minisom

https://github.com/JustGlowing/minisom


MNIST Fashion-MNIST REUTERS-10k
Method pur nmi pur nmi pur nmi
k-means (k = 64) 0.842 0.571 0.716 0.512 0.892 0.427
minisom (8× 8) 0.637 0.430 0.646 0.494 0.690 0.230
kerasom (8× 8) 0.826 0.565 0.717 0.512 0.697 0.324
AE+minisom (8× 8) 0.871 0.616 0.734 0.531 0.690 0.235
AE+kerasom (8× 8) 0.939 0.661 0.764 0.539 0.777 0.306
SOM-VAE (8× 8) 0.868 0.595 0.739 0.520 - -
DESOM (8× 8) 0.939 0.657 0.752 0.538 0.849 0.381

Table 2: Purity and NMI (average on 10 runs). Best result and results with no
signi�cant di�erence (p-value > 0.05) in bold.

Method MNIST Fashion-MNIST REUTERS-10k
k-means (k = #classes) 58.34 56.45 59.37
AE+kerasom (8× 8) + km 76.06 44.87 36.61
DESOM (8× 8) + km 76.11 56.02 57.18

Table 3: Unsupervised clustering accuracy (%) (average on 10 runs).

4.3 Quantitative and qualitative results

Clustering quality results (Tab. 2) con�rm the bene�ts of reducing dimensional-
ity with an AE. The overall best-performing models are AE+kerasom and DE-
SOM. Joint training does not consistently improve purity and NMI on the �rst
two datasets but remains competitive, performs better on REUTERS-10k by a
fair margin and is faster to train. Interestingly, kerasom achieves better than
minisom. The same discovery was made by [10], suggesting that Adam improves
SOM training. Finally, DESOM consistently outperforms its direct competitor,
SOM-VAE. On the classi�cation task (Tab. 3), DESOM consistently achieves
the best performance, demonstrating that joint training with a SOM prior has
enabled to learn a SOM-friendly representation for subsequent classi�cation.

Visualizations of decoded DESOM prototypes (Fig. 3) display well-organized
regions corresponding to di�erent classes and smooth transitions between them.
In addition, code images learned by the standard SOM algorithm are blurred
because of vector averaging in original space, which is not the case in DESOM.

5 Conclusion and future work

DESOM is the �rst approach that jointly trains an autoencoder and a SOM
in a continuous latent space. The learned map is self-organized, competitive in
terms of clustering quality and requires no pretraining. On the classi�cation
task, it outperforms similar methods. Future work will include a more thorough
investigation of hyperparameters, and extensions to the variational or adversarial
frameworks to learner richer representations and provide a generative model.



Fig. 3: DESOM map of MNIST (left) and Fashion-MNIST (right).
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